CLC number: O511
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 0
Clicked: 4416
CAO Yi-gang, JIAO Zheng-kuan, FENG Shang-shen. Pseudopotential generation[J]. Journal of Zhejiang University Science A, 2003, 4(2): 207-213.
@article{title="Pseudopotential generation",
author="CAO Yi-gang, JIAO Zheng-kuan, FENG Shang-shen",
journal="Journal of Zhejiang University Science A",
volume="4",
number="2",
pages="207-213",
year="2003",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2003.0207"
}
%0 Journal Article
%T Pseudopotential generation
%A CAO Yi-gang
%A JIAO Zheng-kuan
%A FENG Shang-shen
%J Journal of Zhejiang University SCIENCE A
%V 4
%N 2
%P 207-213
%@ 1869-1951
%D 2003
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2003.0207
TY - JOUR
T1 - Pseudopotential generation
A1 - CAO Yi-gang
A1 - JIAO Zheng-kuan
A1 - FENG Shang-shen
J0 - Journal of Zhejiang University Science A
VL - 4
IS - 2
SP - 207
EP - 213
%@ 1869-1951
Y1 - 2003
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2003.0207
Abstract: Different classes of first-principle pseudopotentials are compared and various schemes for pseudopotential generation based on norm conservation are discussed in this paper. BHS (Bachelet, Hamann, and Schl¨ter)-scheme and V (Vanderbilt)-modifications are used to derive the KB (Kleinman and Bylander)-pseudopotentials and pseudo wave functions of bismuth. Quality test of pseudopotentials shows that no ghost states occur in the logarithmic derivatives of pseudo wave functions of Bismuth. The obtained bond length of bismuth dimer with this type of pseudopotentials is in good agreement with previous accurately calculated ab initio quantum chemical result.
[1]Abarenkov, I. V. and Heine, V., 1965. The model potential for positive ions. Philos. Mag., 12: 529.
[2]Anderson, P. W., 1963. Concepts in Solids. Benjamin, W. A., Inc., New York, p.66.
[3]Austin, B. J., Heine, V. and Sham, L. J., 1962. General theory of seudopotentials. Phys. Rev., 127: 276.
[4]Bachelet, G. B., Hamann, D. R. and Schlüter, M., 1982. Pseudopotentials that work: From H to Pu. Phys. Rev. B, 26: 4199.
[5]Blochl, P. E., 1990. Generalized separable potentials for electronic-structure calculations. Phys. Rev.B, 41: 5414.
[6]Bylander, D. M. and Kleinman, L., 1990. 4f resonances with norm-conserving pseudopotentials. Phys. Rev.B, 41: 907.
[7]Cohen, M. H. and Heine, V., 1961. Cancellation of kinetic and potential energy in atoms, molecules, and solids. Phys. Rev., 122: 1821.
[8]Cohen, M. L. and Bergstresser, T. K., 1966. Band Structures and Pseudopotential Form Factors for Fourteen Semiconductors of the Diamond and Zinc-blende Structures. Phys. Rev., 141: 789.
[9]Gonze, X., Stumpf, R. and Scheffler, M., 1991. Analysis of separable potentials. Phys. Rev. B, 44: 8503.
[10]Hamann, D. R., Schlüter, M. and Chiang, C., 1979. Norm-Conserving pseudopotentials. Phys. Rev. Lett., 43: 1494.
[11]Hamann, D. R., 1989. Generalized norm-conserving pseudopotentials. Phys. Rev. B, 40: 2980.
[12]Kleinman, L. and Bylander, D. M., 1982. Efficacious form for model pseudopotentials. Phys. Rev. Lett., 48: 1425.
[13]Kresse, G. and Joubert, D., 1999. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B, 59: 1758.
[14]Messiah, A., 1974. Quantum Mechanics. North-Holland, Amsterdam, 1:98-111.
[15]Phillips, J. C. and Kleinman, L., 1959. New method for calculating wave functions in crystals and molecules. Phys. Rev., 116: 287.
[16]Rappe, A. M., Rabe, K. M., Kaxiras, E. and Joannopoulos, J.D., 1990. Optimized pseudopotentials. Phys. Rev. B, 41: 1227.
[17]Saito, M., Sugino, O. and Oshiyama, A., 1992. Validity of the broken-bond model for the DX center in GaAs. Phys. Rev. B, 45: 13745.
[18]Vanderbilt, D., 1985. Optimally smooth norm-conserving pseudopotentials. Phys. Rev. B, 32: 8412.
[19]Zwicker, R. D., 1975. Trial functions in pseudopotential theory. Phys. Rev. B, 12: 5502.
Open peer comments: Debate/Discuss/Question/Opinion
<1>