[1] Byrnes, C.I., Isidori, A., 1991. Passivity, feedback equivalence, and the global stabilization of minimum phase nonlinear system. IEEE Trans. Automat. Contr., 36(11):1228-1240.
[2] Chen, G., Chen, G.R., 1999. Feedback control of unknown chaotic dynamical systems based on time-series data. IEEE Trans. Circu. Sys., 46(5):640-644.
[3] Femat, R., Alvarez-Ramirez, J., 1997. Synchronization of a class of strictly different chaotic oscillators. Physics Letters A, 236(4):307-313.
[4] Hill, D., Moylan, P., 1976. The stability of nonlinear dissipative system. IEEE Trans. Automat. Contr., 21(5):708-711.
[5] Li, G.F., Li, H.Y., Yang, C.W., 2005. Observer-based passive control for uncertain linear systems with delay in state and control input. Chinese Physics, 14(12):2379-2386.
[6] Lorenz, E.N., 1963. Deterministic non-periodic flows. J. Atmos. Sci., 20(2):130-141.
[7] Nam, H.J., Juwha, J., Jin, H.S., 1997. Generalized Luenberger-like Observer for Nonlinear Systems. Proceeding of the American Control Conference, p.2180-2183.
[8] Qi, D.L., Li, X.R., Zhao, G.Z., 2004. Passive control of hybrid chaotic dynamical systems. Journal of Zhejiang University (Engineering Science), 38(1):86-89 (in Chinese).
[9] Qi, D.L., Wang, J.J., Zhao, G.Z., 2005. Passive control of permanent magnet synchronous motor chaotic system. Journal of Zhejiang University SCIENCE, 6A(7): 728-732.
[10] Ott, E., Grebogi, C., York, J.A., 1990. Controlling chaos. Phys. Rev. Lett., 64(11):1196-1199.
[11] Wen, Y., 1999. Passive equivalence of chaos in Lorenz system. IEEE Transaction on Circuits and Systems—I: Fundamental Theory and Application, 46(7):876-878.
[12] Yang, L., Liu, Z., 1998. An improvement and proof of OGY method. App. Math. and Mech., 19(1):1-8.
Open peer comments: Debate/Discuss/Question/Opinion
<1>