CLC number: TP391.7
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 4
Clicked: 5677
MIAO Yong-wei, FENG Jie-qing, ZHENG Guo-xian, PENG Qun-sheng. A level set based segmentation approach for point-sampled surfaces[J]. Journal of Zhejiang University Science A, 2007, 8(4): 575-585.
@article{title="A level set based segmentation approach for point-sampled surfaces",
author="MIAO Yong-wei, FENG Jie-qing, ZHENG Guo-xian, PENG Qun-sheng",
journal="Journal of Zhejiang University Science A",
volume="8",
number="4",
pages="575-585",
year="2007",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2007.A0575"
}
%0 Journal Article
%T A level set based segmentation approach for point-sampled surfaces
%A MIAO Yong-wei
%A FENG Jie-qing
%A ZHENG Guo-xian
%A PENG Qun-sheng
%J Journal of Zhejiang University SCIENCE A
%V 8
%N 4
%P 575-585
%@ 1673-565X
%D 2007
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2007.A0575
TY - JOUR
T1 - A level set based segmentation approach for point-sampled surfaces
A1 - MIAO Yong-wei
A1 - FENG Jie-qing
A1 - ZHENG Guo-xian
A1 - PENG Qun-sheng
J0 - Journal of Zhejiang University Science A
VL - 8
IS - 4
SP - 575
EP - 585
%@ 1673-565X
Y1 - 2007
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2007.A0575
Abstract: Segmenting a complex 3D surface model into some visually meaningful sub-parts is one of the fundamental problems in digital geometry processing. In this paper, a novel segmentation approach of point-sampled surfaces is proposed, which is based on the level set evolution scheme. To segment the model so as to align the patch boundaries with high curvature zones, the driven speed function for the zero level set inside narrow band is defined by the extended curvature field, which approaches zero speed as the propagating front approaches high curvature zone. The effectiveness of the proposed approach is demonstrated by our experimental results. Furthermore, two applications of model segmentation are illustrated, such as piecewise parameterization and local editing for point-sampled geometry.
[1] Adamson, A., Alexa, M., 2003. Approximating and Intersecting Surfaces from Points. Proc. Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, p.230-239.
[2] Adamson, A., Alexa, M., 2006a. Anisotropic Point Set Surfaces. Proc. Afrigraph 2006, p.7-13.
[3] Adamson, A., Alexa, M., 2006b. Point-sampled cell complexes. ACM Trans. on Graphics, 25(3):671-680.
[4] Alexa, M., Behr, J., Cohen-Or, D., Fleishman, S., Levin, D., Silva, C.T., 2001. Point Set Surfaces. Proc. IEEE Visualization 2001, p.21-28.
[5] Alexa, M., Behr, J., Cohen-Or, D., Fleishman, S., Levin, D., Silva, C.T., 2003. Computing and rendering point set surfaces. IEEE Trans. on Visualization and Computer Graphics, 9(1):3-15.
[6] Amenta, N., Kil, Y.J., 2004. Defining point-set surface. ACM Trans. on Graphics, 23(3):264-270.
[7] Attene, M., Falcidieno, B., Spagnuolo, M., 2006. Hierarchical mesh segmentation based on fitting primitives. The Visual Computer, 22(3):181-193.
[8] Do Carmo, M., 1976. Differential Geometry of Curves and Surfaces. Prentice Hall, Englewood Cliffs, NJ, p.51-314.
[9] Fleishman, S., Cohen-Or, D., Silva, C.T., 2005. Robust moving least-squares fitting with sharp features. ACM Trans. on Graphics, 24(3):544-552.
[10] Floater, M., Hormann, K., 2004. Surface Parameterization: A Tutorial and Survey. Advances in Multiresolution Analysis of Geometric Modeling’04, p.259-284.
[11] Funkhouser, T., Kazhdan, M., Shilane, P., Min, P., Kiefer, W., Tal, A., Rusinkiewicz, S., Dobkin, D., 2004. Modeling by example. ACM Trans. on Graphics, 23(3):652-663.
[12] Garland, M., Willmott, A., Heckbert, P., 2001. Hierarchical Face Clustering on Polygonal Surfaces. Proc. ACM Symposium on Interactive 3D Graphics’01, p.49-58.
[13] Jia, Y.B., Mi, L., Tian, J., 2006. Surface Patch Reconstruction via Curve Sampling. Proc. IEEE International Conference on Robotics and Automation’06, p.1371-1377.
[14] Kass, M., Witkin, A., Terzopoulos, D., 1988. Snakes: active contour models. Int. J. Computer Vision, 1(4):321-331.
[15] Katz, S., Tal, A., 2003. Hierachical mesh decomposition using fuzzy clustering and cuts. ACM Trans. on Graphics, 22(3):954-961.
[16] Katz, S., Leifman, G., Tal, A. 2005. Mesh segmentation using feature point and core extraction. The Visual Computer, 21(8-10):649-658.
[17] Kobbelt, L., Campagna, S., Vorsatz, J., Seidel, H.P., 1998. Interactive Multiresolution Modeling on Arbitrary Meshes. ACM SIGGRAPH’98, p.105-114.
[18] Kobbelt, L., Botsch, M., 2004. A survey of point-based techniques in computer graphics. Computers & Graphics, 28(6):801-814.
[19] Lee, Y., Lee, S., 2002. Geometric snakes for triangular meshes. Computer Graphics Forum, 21(3):229-238.
[20] Leventon, M., Faugeraus, O., Grimson, W., 2000. Level Set Based Segmentation with Intensity and Curvature Priors. Proc. Workshop on Mathematical Methods in Biomedical Image Analysis, p.4-11.
[21] Levy, B., Petitjean, S., Ray, N., Maillot, J., 2002. Least squares conformal maps for automatic texture atlas generation. ACM Trans. on Graphics, 21(3):362-371.
[22] Lipman, Y., Sorkine, O., Levin, D., Cohen-Or, D., 2005. Linear rotation-invariant coordinates for meshes. ACM Trans. on Graphics, 24(3):479-487.
[23] Liu, R., Zhang, H., 2004. Segmentation of 3D Meshes through Spectral Clustering. Proc. Pacific Graphics’04, p.298-305.
[24] Liu, Y.J., Tang, K., Joneja, A., 2006. A general framework for progressive point-sampled geometry. J. Zhejiang Univ. Sci. A, 7(7):1201-1209.
[25] Malladi, R., Sethian, J., Vemuri, B., 1995. Shape modeling with front propagation: a level set approach. IEEE Trans. Pattern Anal. Machine Intell., 17(2):158-175.
[26] Mangan, A., Whitaker, R., 1999. Partitioning 3D surface meshes using watershed segmentation. IEEE Trans. on Visualization and Computer Graphics, 5(4):308-321.
[27] Memoli, F., Sapiro, G., 2001. Fast computation of weighted distance functions and geodesics on implicit hyper-surfaces. J. Comput. Phys., 173(1):764-795.
[28] Memoli, F., Sapiro, G., 2002. Distance Functions and Geodesics on Point Clouds. Technical Report, 2002. Http://citeseer.ist.psu.edu/memoli02distance.html
[29] Museth, K., Breen, D., Whitaker, R., Barr, A., 2002. Level Set Surface Editing Operators. ACM SIGGRAPH’02, p.330-338.
[30] Osher, S., Sethian, J., 1988. Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi Formulations. J. Comp. Phys., 79(1):12-49.
[31] Osher, S., Fedkiw, R., 2001. Level set methods: an overview and some recent results. J. Comp. Phys., 169(2):463-502.
[32] Page, D.L., Koschan, A.F., Abidi, M.A., 2003. Perception-based 3D Triangle Mesh Segmentation Using Fast Marching Watersheds. IEEE Computer Society Conference on Computer Vision and Pattern Recognition’03, p.27-32.
[33] Pauly, M., Gross, M., Kobbelt, L., 2002. Efficient Simplification of Point-Sampled Surfaces. Proc. IEEE Visualization’02, p.163-170.
[34] Pauly, M., Keiser, R., Kobbelt, L., Gross, M., 2003. Shape modeling with point-sampled geometry. ACM Trans. on Graphics, 22(3):641-650.
[35] Pauly, M., Kobbelt, L., Gross, M., 2006. Point-based multiscale surface representation. ACM Trans. on Graphics, 25(2):177-193.
[36] Sethian, J., 1999. Level Set Methods and Fast Marching Methods. Cambridge University Press, Cambridge, UK, p.1-100.
[37] Shamir, A., 2004. A Formulation of Boundary Mesh Segmentation. Proc. 2nd International Symposium on 3D Data Processing, Visualization, and Transmission, p.82-89.
[38] Shlafman, S., Tal, A., Katz, S., 2002. Metamorphosis of polyhedral surfaces using decomposition. Computer Graphics Forum, 21(3):219-228.
[39] Sorkine, O., Lipman, Y., Cohen-Or, D., Alexa, M., Rossl, C., Seidel, H.P., 2004. Laplacian Surface Editing. ACM SIGGRAPH Symposium on Geometry Processing’04, p.179-188.
[40] Xu, M.H., Thompson, P.M., Toga, A.W., 2004. An adaptive level set segmentation on a triangulated mesh. IEEE Trans. on Medical Image, 23(2):191-201.
[41] Yamauchi, H., Lee, S., Lee, Y., Ohtake, Y., Belyaev, A., Seidel, H.P., 2005a. Feature Sensitive Mesh Segmentation with Mean Shift. Shape Modeling International’05, p.236-243.
[42] Yamauchi, H., Gumhold, S., Zayer, R., Seidel, H.P., 2005b. Mesh segmentation driven by Gaussian curvature. The Visual Computer, 21(8-10):659-668.
[43] Yamazaki, I., Natarajan, V., Bai, Z., Hamann, B., 2006. Segmenting Point Sets. IEEE International Conference on Shape Modeling and Applications’06, p.4-13.
[44] Yu, Y., Zhou, K., Xu, D., Shi, X., Bao, H., Guo, B., Shum, H.Y., 2004. Mesh editing with Poisson-based gradient field manipulation. ACM Trans. on Graphics, 23(3):644-651.
[45] Zhou, K., Snyder, J., Guo, B., Shum, H.Y., 2004. Iso-charts: Stretch-driven Mesh Parameterization Using Spectral Analysis. Eurographics Symposium on Geometry Processing’04, p.47-56.
[46] Zorin, D., Schroder, P., Sweldens, W., 1997. Interactive Multiresolution Mesh Editing. ACM SIGGRAPH’97, p.259-268.
[47] Zwicker, M., Pauly, M., Knoll, O., Gross, M., 2002. Pointshop 3D: An Interactive System for Point-based Surface Editing. ACM SIGGRAPH’02, p.322-329.
[48] Zwicker, M., Gotsman, C., 2004. Meshing Point Clouds Using Spherical Parameterization. Eurographics Symposium on Point-based Graphics’04. Zurich, p.173-180.
Open peer comments: Debate/Discuss/Question/Opinion
<1>