CLC number: N949; O22; TP3
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 2
Clicked: 5859
WANG Zhou-jing, LI Kevin W.. Layer-layout-based heuristics for loading homogeneous items into a single container[J]. Journal of Zhejiang University Science A, 2007, 8(12): 1944-1952.
@article{title="Layer-layout-based heuristics for loading homogeneous items into a single container",
author="WANG Zhou-jing, LI Kevin W.",
journal="Journal of Zhejiang University Science A",
volume="8",
number="12",
pages="1944-1952",
year="2007",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2007.A1944"
}
%0 Journal Article
%T Layer-layout-based heuristics for loading homogeneous items into a single container
%A WANG Zhou-jing
%A LI Kevin W.
%J Journal of Zhejiang University SCIENCE A
%V 8
%N 12
%P 1944-1952
%@ 1673-565X
%D 2007
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2007.A1944
TY - JOUR
T1 - Layer-layout-based heuristics for loading homogeneous items into a single container
A1 - WANG Zhou-jing
A1 - LI Kevin W.
J0 - Journal of Zhejiang University Science A
VL - 8
IS - 12
SP - 1944
EP - 1952
%@ 1673-565X
Y1 - 2007
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2007.A1944
Abstract: The container loading problem (CLP) is a well-known NP-hard problem. Due to the computation complexity, heuristics is an often-sought approach. This article proposes two heuristics to pack homogeneous rectangular boxes into a single container. Both algorithms adopt the concept of building layers on one face of the container, but the first heuristic determines the layer face once for all, while the second treats the remaining container space as a reduced-sized container after one layer is loaded and, hence, selects the layer face dynamically. To handle the layout design problem at a layer’s level, a block-based 2D packing procedure is also developed. Numerical studies demonstrate the efficiency of the heuristics.
[1] Alvarez-Valdes, R., Parreno, F., Tamarit, J.M., 2005. A tabu search algorithm for the pallet loading problem. OR Spectrum, 27:43-61.
[2] Birgin, E.G., Morabito, R., Nishihara, F.H., 2005. A note on an L-approach for solving the manufacturer’s pallet loading problem. J. Operat. Res. Soc., 56:1448-1451.
[3] Bischoff, E.E., Ratcliff, M.S., 1995. Issues in the development of approaches to container loading. OMEGA–Int. J. Manag. Sci., 23(4):377-390.
[4] Bischoff, E.E., 2006. 3D packing of items with limited load bearing strength. Eur. J. Operat. Res., 168(3):952-966.
[5] Bortfeldt, A., Gehring, H., 2001. A hybrid genetic algorithm for the container loading problem. Eur. J. Operat. Res., 131(1):143-161.
[6] Bortfeldt, A., Gehring, H., Mack, D., 2003. A parallel tabu search algorithm for solving the container loading problem. Parallel Computing, 29(5):641-662.
[7] Davies, A.P., Bischoff, E.E., 1999. Weight distribution considerations in container loading. Eur. J. Operat. Res., 114(3):509-527.
[8] De Cani, P., 1978. A note on the two-dimensional rectangular cutting-stock problem. J. Operat. Res. Soc., 29(7):703-706.
[9] Dyckhoff, H., 1990. A topology of cutting and packing problems. Eur. J. Operat. Res., 44(2):145-159.
[10] George, J.A., Robinson, D.F., 1980. A heuristic for packing boxes into a container. Comput. Operat. Res., 7(3):147-156.
[11] Jin, Z., Ohno, K., Du, J., 2004. An efficient approach for the three-dimensional container packing problem with practical constraints. Asia-Pacific J. Operat. Res., 21(3):279-295.
[12] Keller, G., 2005. Statistics for Management and Economics (7th Ed). South-Western College, Toronto, p.434-444.
[13] Li, B., Ye, H.Z., 2002. A heuristic layout restriction algorithm for solving two-dimensional rectangular layout loading problems. J. Southwest Jiao Tong Univ., 37(4):443-447 (in Chinese).
[14] Loh, T.H., Nee, A.Y.C., 1992. A Packing Algorithm for Hexahedral Boxes. Proc. Conf. of Industrial Automation, p.115-126.
[15] Mack, D., Bortfeldt, A., Gehring, H., 2004. A parallel hybrid local search algorithm for the container loading problem. Int. Trans. Operat. Res., 11(5):511-533.
[16] Moura, A., Oliveira, J.F., 2005. A GRASP approach to the container-loading problem. IEEE Intell. Syst., 20(4):50-57.
[17] Ngoi, B.K.A., Tay, M.L., Chua, E.S., 1994. Applying spatial representation techniques to the container packing problem. Int. J. Prod. Res., 32(1):111-123.
[18] Pisinger, D., 2002. Heuristics for the container loading problem. Eur. J. Operat. Res., 141(2):382-392.
[19] Pureza, V., Morabito, R., 2005. Some experiments with a simple tabu search algorithm for the manufacturer’s pallet loading problem. Computers and Operations Research, 33(3):804-819.
[20] Scheithauer, G., 1992. Algorithm for the Container Loading Problem. Operational Research Proc. 1991, p.445-452.
[21] Scheithauer, G., Terno, J., 1996. The G4-heuristic for the pallet loading problem. J. Operat. Res. Soc., 47:511-522.
[22] Takahara, S., 2005. Loading Problem in Multiple Containers and Containers and Pallets Using Strategic Search Method. Modeling Decisions for Artificial Intelligence, Proc. Lecture Notes in Artificial Intelligence, 3558:448-456.
[23] Terno, J., Scheithauer, G., Sommerweiss, U., Riehme, J., 2000. An efficient approach for the multi-pallet loading problem. Eur. J. Operat. Res., 123(2):372-381.
[24] Wang, Z.J., Li, K.W., 2007. A Layer-based Heuristic for the Container Loading Problem with Homogeneous Boxes. Proc. 2nd Int. Conf. on Computer Science and Education, p.233-238.
[25] Wang, Z.J., Li, K.W., Zhang, X.P., 2006. A Heuristic Algorithm for the Container Loading Problem with Heterogeneous Boxes. Proc. IEEE Int. Conf. on Systems, Man, and Cybernetics, p.5240-5245.
[26] Wang, Z.J., Li, K.W., Levy, J.K., 2007. A heuristic for the container loading problem: a tertiary-tree-based dynamic space decomposition approach. Eur. J. Operat. Res., in press.
Open peer comments: Debate/Discuss/Question/Opinion
<1>