CLC number: O343.1
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2009-01-16
Cited: 8
Clicked: 6226
Ji YING, Hui-ming WANG. Magnetoelectroelastic fields in rotating multiferroic composite cylindrical structures[J]. Journal of Zhejiang University Science A, 2009, 10(3): 319-326.
@article{title="Magnetoelectroelastic fields in rotating multiferroic composite cylindrical structures",
author="Ji YING, Hui-ming WANG",
journal="Journal of Zhejiang University Science A",
volume="10",
number="3",
pages="319-326",
year="2009",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A0820517"
}
%0 Journal Article
%T Magnetoelectroelastic fields in rotating multiferroic composite cylindrical structures
%A Ji YING
%A Hui-ming WANG
%J Journal of Zhejiang University SCIENCE A
%V 10
%N 3
%P 319-326
%@ 1673-565X
%D 2009
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A0820517
TY - JOUR
T1 - Magnetoelectroelastic fields in rotating multiferroic composite cylindrical structures
A1 - Ji YING
A1 - Hui-ming WANG
J0 - Journal of Zhejiang University Science A
VL - 10
IS - 3
SP - 319
EP - 326
%@ 1673-565X
Y1 - 2009
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A0820517
Abstract: An analytical solution is obtained for a rotating multiferroic composite hollow cylinder made of radially polarized piezoelectric and piezomagnetic materials. Both the number of layers and the stacking sequence of the composite cylinder can be arbitrary. General mechanical, electric and magnetic boundary conditions can be applied at both the inner and outer cylindrical surfaces. The state space method is employed so that only a 2×2 matrix is involved in the whole solving procedure. In the numerical experiments, the distributions of elastic, electric as well as magnetic fields in an internally pressurized rotating BaTiO3/CoFe2O4 composite hollow cylinder subjected to different boundary conditions are presented graphically. The results clearly show that the stress fields in a multiferroic composite cylinder are controllable.
[1] Babaei, M.H., Chen, Z.T., 2008. Exact solutions for radially polarized and magnetized magnetoelectroelastic rotating cylinders. Smart Materials and Structures, 17(2):025035.
[2] Buchanan, G.R., 2003. Free vibration of an infinite magneto-electro-elastic cylinder. Journal of Sound and Vibration, 268(2):413-426.
[3] Callioglu, H., 2004. Stress analysis of an orthotropic rotating disc under thermal loading. Journal of Reinforced Plastics and Composites, 23(17):1859-1867.
[4] Chang, C.I., 1974. A closed-form solution for an orthotropic rotating disk. ASME Journal of Applied Mechanics, 41(4):1122-1123.
[5] Chen, W.Q., Lee, K.Y., Ding, H.J., 2005. On free vibration of non-homogeneous transversely isotropic magneto-electro-elastic plates. Journal of Sound and Vibration, 279(1-2):237-251.
[6] Durodola, J.F., 2000. Deformation and stresses in functionally graded rotating disks. Composites Science and Technology, 60(7):987-995.
[7] El-Naggar, A.M., Abd-Alla, A.M., Fahmy, M.A., Ahmed, S.M., 2002. Thermal stress in a rotating non-homogeneous orthotropic hollow cylinder. Heat and Mass Transfer, 39(1):41-46.
[8] Eraslan, A.N., Akis, T., 2006. On the plane strain and plane stress solutions of functionally graded rotating solid shaft and solid disk problems. Acta Mechanica, 181(1-2):43-63.
[9] Galic, D., Horgan, C.O., 2003. The stress response of radially polarized rotating piezoelectric cylinders. ASME Journal of Applied Mechanics, 70(3):426-435.
[10] Genta, G., Gola, M., 1981. The stress distribution in orthotropic rotating disks. ASME Journal of Applied Mechanics, 48(3):559-562.
[11] Pan, E., 2001. Exact solution for simply supported and multilayered magneto-electro-elastic plate. ASME Journal of Applied Mechanics, 68(4):608-618.
[12] Pan, E., Heyliger, P.R., 2003. Exact solutions for magneto-electro-elastic laminates in cylindrical bending. International Journal of Solids and Structures, 40(24):6859-6876.
[13] Ramirez, F., Heyliger, P.R., Pan, E., 2006. Free vibration response of two-dimensional magneto-electro-elastic laminated plates. Journal of Sound and Vibration, 292(3-5):626-644.
[14] Spaldin, N.A., Fiebig, M., 2005. The renaissance of magnetoelectric multiferroics. Science, 309(5733):391-392.
[15] Timoshenko, S.P., Goodier, J.N., 1970. Theory of Elasticity. McGraw-Hill, New York.
[16] Wang, H.M., Ding, H.J., 2007. Control of stress response in a rotating infinite hollow multilayered piezoelectric cylinder. Archive of Applied Mechanics, 77(1):11-20.
[17] Wang, X., Zhong, Z., 2003. A finitely long circular cylindrical shell of piezoelectric/piezomagnetic composite under pressure and temperature change. International Journal of Engineering Science, 41(20):2429-2445.
[18] You, L.H., You, X.Y., Zhang, J.J., Li, J., 2007. On rotating circular disks with varying material properties. Zeitschrift für angewandte Mathematik und Physik, 58(6):1068-1084.
[19] Zenkour, A.M., 2007. Elastic deformation of the rotating functionally graded annular disc with rigid casing. Journal of Materials Science, 42(23):9717-9724.
Open peer comments: Debate/Discuss/Question/Opinion
<1>