Full Text:   <5138>

CLC number: TB34; TP271

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2009-07-24

Cited: 12

Clicked: 7365

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2009 Vol.10 No.9 P.1296-1304

http://doi.org/10.1631/jzus.A0820666


Simulation, experimental evaluation and performance improvement of a cone dielectric elastomer actuator


Author(s):  Hua-ming WANG, Jing-ying ZHU, Ke-bei YE

Affiliation(s):  Jiangsu Key Laboratory of Precision and Micro-manufacturing Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Corresponding email(s):   hmwang@nuaa.edu.cn

Key Words:  Dielectric elastomer (DE), Actuator, Simulation, Performance improvement


Hua-ming WANG, Jing-ying ZHU, Ke-bei YE. Simulation, experimental evaluation and performance improvement of a cone dielectric elastomer actuator[J]. Journal of Zhejiang University Science A, 2009, 10(9): 1296-1304.

@article{title="Simulation, experimental evaluation and performance improvement of a cone dielectric elastomer actuator",
author="Hua-ming WANG, Jing-ying ZHU, Ke-bei YE",
journal="Journal of Zhejiang University Science A",
volume="10",
number="9",
pages="1296-1304",
year="2009",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A0820666"
}

%0 Journal Article
%T Simulation, experimental evaluation and performance improvement of a cone dielectric elastomer actuator
%A Hua-ming WANG
%A Jing-ying ZHU
%A Ke-bei YE
%J Journal of Zhejiang University SCIENCE A
%V 10
%N 9
%P 1296-1304
%@ 1673-565X
%D 2009
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A0820666

TY - JOUR
T1 - Simulation, experimental evaluation and performance improvement of a cone dielectric elastomer actuator
A1 - Hua-ming WANG
A1 - Jing-ying ZHU
A1 - Ke-bei YE
J0 - Journal of Zhejiang University Science A
VL - 10
IS - 9
SP - 1296
EP - 1304
%@ 1673-565X
Y1 - 2009
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A0820666


Abstract: 
Dielectric elastomer actuators (DEAs) are an emerging class of polymer actuation devices and have extensive application prospect in the field of robotics because of their light weight, high efficiency and large deformation. A cone DEA is manufactured and its working principle is analyzed. To obtain the deformation of elastomer and movement of DEA in advance, a finite element method (FEM) simulation is performed first. According to the working principle, two working equilibrium points of DEA, corresponding to the displacements of DEA with voltage off and on, are obtained and validated by experiments, thus work output in a workcycle is computed. Experiments show that the actuator can respond quickly when voltage is applied and can return to its original position rapidly when voltage is released. simulation results agree well with experimental ones and the feasibility of DEA simulation is proved, and causes for the small difference between them in displacement output are analyzed. The performance of the actuator is improved from the aspects of both displacement and force output. A diamond four-bar linkage mechanism is used as the preload part and a displacement output of 17 mm is obtained. The force output of one actuating unit is about 1.77 N, so three actuating units are assembled in parallel and the force output is heightened to as high as 5.07 N.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1] Bar-Cohen, Y., 2001. Electroactive Polymer (EAP) Actuators as Artificial Muscles-Reality, Potential and Challenges. SPIE Press, WA, USA.

[2] Bonwit, N., Heim, J., Rosenthal, M., Duncheon, C., Beavers, A., 2006. Design of Commercial Applications of EPAM Technology. Proceedings of SPIE Electroactive Polymer Actuators and Devices, San Diego, USA. SPIE, Bellingham, USA, p.616805-1-616805-10.

[3] Carpi, F., Fantoni, G., Guerrini, P., de Rossi, D., 2006. Buckling dielectric ealstomer actuators and their use as motors for the eyeballs of an android face. Proceedings of SPIE Electroactive Polymer Actuators and Devices, San Diego, USA. SPIE, Bellingham, USA, p.61681A-1-61681A-6.

[4] Carpi, F., Salaris, C., De Rossi, D., 2007. Folded dielectric elastomer actuators. Smart Materials and Structures, 16:300-305.

[5] Choi, H.R., Jung, K., Chu, N.H., Jung, M.Y., Koo, I., Koo, J., Lee, J., Lee, J., Nam, J., Cho, M., Lee, Y.K., 2005. Effects of Prestrain on Behavior of Dielectric Elastomer Actuator. Proceedings of SPIE Smart Electroactive Polymer Actuators and Devices, San Diego, USA. SPIE, Bellingham, USA, p.283-291.

[6] de Botton, G., Tevet-Deree, L., 2006. Electroactive Polymer Composites-analysis and Simulation. Proceedings of SPIE Active Materials: Behavior and Mechanics, San Diego, USA. SPIE, Bellingham, USA, p.548-557.

[7] Goulbourne, N., Frecker, M., Mockensturm, E., Snyder, A., 2003. Modeling of a Dielectric Elastomer Diaphragm for a Prosthetic Blood Pump. Proceedings of SPIE Electroactive Polymer Actuators and Devices, San Diego, USA. SPIE, Bellingham, USA, p.319-331.

[8] Herr, H., Kornbluh, R., 2004. New Horizons for Orthotic and Prosthetic Technology: Artificial Muscle for Ambulation. Proceedings of SPIE Electroactive Polymer Actuators and Devices, San Diego, USA. SPIE, Bellingham, USA, p.1-9.

[9] Jhong, Y.Y., Huang, C.M., Hsieh, C.C., Fu, C.C., 2007. Improvement of Viscoelastic Effects of Dielectric Elastomer Actuator and Its Application for Valve Devices. Proceedings of SPIE Electroactive Polymer Actuators and Devices, San Diego, USA. SPIE, Bellingham, USA, p.65241Y-1-65241Y-9.

[10] Jung, K., Koo, J.C., Nam, J., Lee, Y.K., Choi, H.R., 2007. Artificial annelid robot driven by soft actuators. Bioinspiration & Biomimetics, 2(2):S42-S49.

[11] Kofod, G., Kornbluh, R.D., Pelrine, R.E., Sommer-Larsen, P., 2003. Actuation response of polyacrylate dielectric elastomers. Journal of Intelligent Material Systems and Structures, 14(12):787-793.

[12] Kornbluh, R., Pelrine, R., Prahlad, H., 2004. Electroactive Polymers: An Emerging Technology for MEMS. Proceedings of SPIE MEMS/MOEMS Components and Their Applications, San Jose, USA. SPIE, Bellingham, USA, p.13-27.

[13] Kovacs, G., Lochmatter, P., Wissler, M., 2007. An arm wrestling robot driven by dielectric elastomer actuators. Smart Materials and Structures, 16:S306-S317.

[14] Michel, S., Dürager, C., Zobel, M., Fink, E., 2007. Electro Active Polymers as a Novel Actuator Technology for Lighter than Air Vehicles. Proceedings of SPIE Electroactive Polymer Actuators and Devices, San Diego, USA. SPIE, Bellingham, USA, p.65241Q1-11.

[15] Nam, J.D., Choi, H.R., Koo, J.C., 2007. Dielectric Elastomers for Artificial Muscles. Kwang, J.K., Satoshi, T. (Eds.), Electroactive Polymers for Robotic Applications. Springer, London, p.37-48.

[16] Pei, Q.B., Pelrine, R., Stanford, S., 2003. Electroelastomer rolls and their application for biomimetic walking robots. Synthetic Metals, 135-136:129-131.

[17] Pelrine, R.E., Kornbluh, R.D., Joseph, J.P., 1998. Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation. Sensors and Actuators A: Physical, 64(1):77-85.

[18] Pelrine, R.E., Kornbluh, R.D., Pei, Q.B., Joseph, J., 2000. High-speed electrically actuated elastomers with over 100% strain. Science, 287(5454):836-839.

[19] Plante, J., Devita, L.M., Dubowsky, S., 2007. A Road to Practical Dielectric Elastomer Actuators Based Robotics and Mechatronics: Discrete Actuation. Proceedings of SPIE Electroactive Polymer Actuators and Devices, San Diego, USA. SPIE, Bellingham, USA, p.652406-1-652406-15.

[20] Plante, J.S., 2006. Dielectric Elastomer Actuators for Binary Robotics and Mechatronics. PhD Thesis, Massachusetts Institute of Technology, Boston, USA.

[21] Vogan, J., 2004. Development of Dielectric Elastomer Actuators for MRI Devices. MS Thesis, Massachusetts Institute of Technology, Boston, USA.

[22] Wissler, M., 2007. Modeling Dielectric Elastomer Actuators. PhD Thesis, Swiss Federal Institute of Technology, Zurich, Switzerland.

[23] Wissler, M., Mazza, E., 2007. Mechanical behavior of an acrylic elastomer used in dielectric elastomer actuators. Sensors and Actuators A: Physical, 134(2):494-504.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE