CLC number: X703
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2014-04-25
Cited: 3
Clicked: 6756
Abbas Al-Refaie. Applying process analytical technology framework to optimize multiple responses in wastewater treatment process[J]. Journal of Zhejiang University Science A, 2014, 15(5): 374-384.
@article{title="Applying process analytical technology framework to optimize multiple responses in wastewater treatment process",
author="Abbas Al-Refaie",
journal="Journal of Zhejiang University Science A",
volume="15",
number="5",
pages="374-384",
year="2014",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1300262"
}
%0 Journal Article
%T Applying process analytical technology framework to optimize multiple responses in wastewater treatment process
%A Abbas Al-Refaie
%J Journal of Zhejiang University SCIENCE A
%V 15
%N 5
%P 374-384
%@ 1673-565X
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1300262
TY - JOUR
T1 - Applying process analytical technology framework to optimize multiple responses in wastewater treatment process
A1 - Abbas Al-Refaie
J0 - Journal of Zhejiang University Science A
VL - 15
IS - 5
SP - 374
EP - 384
%@ 1673-565X
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1300262
Abstract: In this research, the process analytical technology (PAT) framework is used to optimize the performance of the wastewater treatment process in poultry industry. Two responses, turbidity and sludge volume index (SVI), are of main manufacturer’s interest. Initially, the moving average (MA) and moving range (MR) control charts are established for each response. The 33 full factorial design with two replicates is then used for conducting experimental work. The weighted additive model in fuzzy goal programming is formulated, and then employed to determine the combination of optimal factor settings. Finally, confirmation experiments follow at the combination of optimal factor settings. The results show that the actual process index for turbidity is improved from 1.34 to 5.5, while it is enhanced from 1.46 to 1.93 for SVI. Moreover, the multiple process capability index is improved significantly from 1.95 to 10.6, which also indicates that the treatment process becomes highly capable with both responses concurrently. Further, the process standard deviations at initial (optimal) factor settings are 2.16 (1.27) and 6.02 (3.39) for turbidity and SVI, respectively. These values show significant variability reductions in turbidity and SVI by 41.22% and 77.75%, respectively. Such improvements will lead to huge savings in quality and productivity costs. In conclusion, the PAT framework is found to be an effective approach for optimizing the performance of the wastewater treatment process with multiple responses.
Open peer comments: Debate/Discuss/Question/Opinion
<1>