Full Text:   <2493>

Summary:  <1837>

CLC number: TH113

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2018-12-26

Cited: 0

Clicked: 5735

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Yang Gao

https://orcid.org/0000-0003-1728-6992

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2019 Vol.20 No.2 P.133-147

http://doi.org/10.1631/jzus.A1800472


Static response of functionally graded multilayered one-dimensional hexagonal piezoelectric quasicrystal plates using the state vector approach


Author(s):  Yun-zhi Huang, Yang Li, Lian-zhi Yang, Yang Gao

Affiliation(s):  College of Science, China Agricultural University, Beijing 100083, China; more

Corresponding email(s):   gaoyangg@gmail.com

Key Words:  State vector approach, Functionally graded quasicrystals, Piezoelectric, Plates


Yun-zhi Huang, Yang Li, Lian-zhi Yang, Yang Gao. Static response of functionally graded multilayered one-dimensional hexagonal piezoelectric quasicrystal plates using the state vector approach[J]. Journal of Zhejiang University Science A, 2019, 20(2): 133-147.

@article{title="Static response of functionally graded multilayered one-dimensional hexagonal piezoelectric quasicrystal plates using the state vector approach",
author="Yun-zhi Huang, Yang Li, Lian-zhi Yang, Yang Gao",
journal="Journal of Zhejiang University Science A",
volume="20",
number="2",
pages="133-147",
year="2019",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1800472"
}

%0 Journal Article
%T Static response of functionally graded multilayered one-dimensional hexagonal piezoelectric quasicrystal plates using the state vector approach
%A Yun-zhi Huang
%A Yang Li
%A Lian-zhi Yang
%A Yang Gao
%J Journal of Zhejiang University SCIENCE A
%V 20
%N 2
%P 133-147
%@ 1673-565X
%D 2019
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1800472

TY - JOUR
T1 - Static response of functionally graded multilayered one-dimensional hexagonal piezoelectric quasicrystal plates using the state vector approach
A1 - Yun-zhi Huang
A1 - Yang Li
A1 - Lian-zhi Yang
A1 - Yang Gao
J0 - Journal of Zhejiang University Science A
VL - 20
IS - 2
SP - 133
EP - 147
%@ 1673-565X
Y1 - 2019
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1800472


Abstract: 
The effect of the non-homogeneity of material properties has been considered the important variation mechanism in the static responses of quasicrystal structures, but the existing theoretical model for it is unable to simulate the material change format beyond the exponential function. In this paper, we create a new model of functionally graded multilayered 1D piezoelectric quasicrystal plates using the state vector approach, in which varying functionally graded electro-elastic properties can be extended from exponential to linear and higher order in the thickness direction. Based on the state equations, an analytical solution for a single plate has been derived, and the result for the corresponding multilayered case is obtained utilizing the propagator matrix method. The present study shows, in particular, that coefficient orders of two varying functions (the power function and the exponential function) of the material gradient provide the ability to tailor the mechanical behaviors in the system’s phonon, phason, and electric fields. Moreover, the insensitive points of phonon stress and electric potential under functionally graded effects in the quasicrystal layer are observed. In addition, the influences of stacking sequences and discontinuity of horizontal stress are explored in the simulation by the new model. The results are very useful for the design and understanding of the characterization of functionally graded piezoelectric quasicrystal materials in their applications to multilayered systems.

The authors applied the state vector method to study static response of FG multilayered piezoelectric plates. Although the state vector method is not new, however, there is original engineering interests in the problem presented in this paper, particularly quasicrystal material properties and multilayered effects.

基于状态向量法分析功能梯度一维六方压电准晶层合板的静态响应

目的:功能梯度准晶材料有助于减缓层合板界面处的应力集中现象,提高层间粘接强度,从而提升层合板表面的耐磨性. 本文旨在建立功能梯度压电准晶层合板的力学模型,并研究功能梯度变化和叠放顺序对层合板的影响.
创新点: 1. 首次将状态向量法推广到功能梯度压电准晶板的分析中; 2. 假设功能梯度函数的变化形式为幂函数和指数函数; 3. 在准晶层中观察到声子场应力和电势的不敏感点.
方法:1. 通过联立三大基本方程,推导出准晶板的状态方程,并求解该微分方程,得到单层准晶板的解析解; 2. 通过引入功能梯度函数,使解析解中的描述各材料特性的值能够沿厚度方向呈现梯度变化; 3. 采用传递矩阵法,求出多层准晶板的解析解; 4. 通过仿真模拟,将所得结果与已有文献进行对比,验证所提方法的可行性和有效性.
结论: 1. 准晶层合板中的功能梯度效应随着梯度参数的增加而增大,且材料参数的变化对声子场、相位子场以及电场的响应均产生影响. 2. 在功能梯度 效应下,从准晶层中观察到了声子场应力和电势的不敏感点. 3. 与准晶作为中间层相比,准晶作为表层时机械载荷引起的位移响应更小. 研究结果可以为压电准晶元器件的设计提供理论参考.

关键词:状态向量法; 功能梯度准晶; 压电; 板

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Alibeigloo A, 2018. Thermo elasticity solution of functionally graded, solid, circular, and annular plates integrated with piezoelectric layers using the differential quadrature method. Mechanics of Advanced Materials and Structures, 25(9):766-784.

[2]Altay G, Dökmeci MC, 2012. On the fundamental equations of piezoelasticity of quasicrystal media. International Journal of Solids and Structures, 49(23-24):3255-3262.

[3]Chan KC, Qu NS, Zhu D, 2002. Fabrication of graded nickel-quasicrystal composite by electrodeposition. Transactions of the IMF, 80(6):210-213.

[4]Chen WQ, Lee KY, 2003. Alternative state space formulations for magnetoelectric thermoelasticity with transverse isotropy and the application to bending analysis of nonhomogeneous plates. International Journal of Solids and Structures, 40(21):5689-5705.

[5]Ding DH, Yang WG, Hu CZ, et al., 1993. Generalized elasticity theory of quasicrystals. Physical Review B, 48(10):7003-7010.

[6]Dubois JM, 2005. Useful Quasicrystals. World Scientific, Singapore, Singapore, p.45-56.

[7]Fan TY, 2010. Mathematical Theory of Elasticity of Quasicrystals and Its Applications. Science Press, Beijing, China, p.118-120 (in Chinese).

[8]Fan TY, 2013. Mathematical theory and methods of mechanics of quasicrystalline materials. Engineering, 5(4):407-448.

[9]Fujiwara T, de Laissardière GT, Yamamoto S, 1994. Electronic structure and electron transport in quasicrystals. Materials Science Forum, 150-151:387-394.

[10]Gao Y, Zhao BS, 2009. General solutions of three-dimensional problems for two-dimensional quasicrystals. Applied Mathematical Modelling, 33(8):3382-3391.

[11]Guo JH, Chen JY, Pan EN, 2016. Size-dependent behavior of functionally graded anisotropic composite plates. International Journal of Engineering Science, 106:110-124.

[12]Hu CZ, Wang RH, Ding DH, et al., 1997. Piezoelectric effects in quasicrystals. Physical Review B, 56(5):2463-2468.

[13]Hu WF, Liu YH, 2015. A new state space solution for rectangular thick laminates with clamped edges. Chinese Journal of Theoretical and Applied Mechanics, 47(5):762-771 (in Chinese).

[14]Levinson M, Cooke DW, 1983. Thick rectangular plates—I: the generalized Navier solution. International Journal of Mechanical Sciences, 25(3):199-205.

[15]Li LH, Liu GT, 2012. Stroh formalism for icosahedral quasicrystal and its application. Physics Letters A, 376(8-9):987-990.

[16]Li XF, Xie LY, Fan TY, 2013. Elasticity and dislocations in quasicrystals with 18-fold symmetry. Physics Letters A, 377(39):2810-2814.

[17]Li XY, Ding HJ, Chen WQ, 2006. Pure bending of simply supported circular plate of transversely isotropic functionally graded material. Journal of Zhejiang University SCIENCE A, 7(8):1324-1328.

[18]Li XY, Li PD, Wu TH, et al., 2014. Three-dimensional fundamental solutions for one-dimensional hexagonal quasicrystal with piezoelectric effect. Physics Letters A, 378(10):826-834.

[19]Li Y, Yang LZ, Gao Y, 2017. An exact solution for a functionally graded multilayered one-dimensional orthorhombic quasicrystal plate. Acta Mechanica, in press.

[20]Louzguine-Luzgin DV, Inoue A, 2008. Formation and properties of quasicrystals. Annual Review of Materials Research, 38:403-423.

[21]Mikaeeli S, Behjat B, 2016. Three-dimensional analysis of thick functionally graded piezoelectric plate using EFG method. Composite Structures, 154:591-599.

[22]Móricz F, 1989. On Λ2-strong convergence of numerical sequences and Fourier series. Acta Mathematica Hungarica, 54(3-4):319-327.

[23]Pan E, Han F, 2005. Exact solution for functionally graded and layered magneto-electro-elastic plates. International Journal of Engineering Science, 43(3-4):321-339.

[24]Qing GH, Wang L, Zhang XH, 2017. Analytical solution of composite laminates with two opposite sides clamped and other sides free boundary. Machinery Design & Manufacture, (2):161-164 (in Chinese).

[25]Shechtman D, Blech I, Gratias D, et al., 1984. Metallic phase with long-range orientational order and no translational symmetry. Physical Review Letters, 53(20):1951-1953.

[26]Sheng HY, Wang H, Ye JQ, 2007. State space solution for thick laminated piezoelectric plates with clamped and electric open-circuited boundary conditions. International Journal of Mechanical Sciences, 49(7):806-818.

[27]Sladek J, Sladek V, Pan E, 2013. Bending analyses of 1D orthorhombic quasicrystal plates. International Journal of Solids and Structures, 50(24):3975-3983.

[28]Sun TY, Guo JH, Zhang XY, 2018. Static deformation of a multilayered one-dimensional hexagonal quasicrystal plate with piezoelectric effect. Applied Mathematics and Mechanics (English Edition), 39(3):335-352.

[29]Suresh S, Mortensen A, 1998. Fundamentals of Functionally Graded Materials: Processing and Thermomechanical Behavior of Graded Metals and Metal-ceramic Composites. IOM Communications, London, UK, p.156-163.

[30]Timoshenko SP, Goodier JN, 1970. Theory of Elasticity. McGraw-Hill, New York, USA, p.78-82.

[31]Wang JG, Chen LF, Fang SS, 2003. State vector approach to analysis of multilayered magneto-electro-elastic plates. International Journal of Solids and Structures, 40(7):1669-1680.

[32]Wang X, Zhang JQ, Guo XM, 2005. Two kinds of contact problems in decagonal quasicrystalline materials of point group 10 mm. Acta Mechanica Sinica, 37(2):169-174 (in Chinese).

[33]Xu WS, Wu D, Gao Y, 2017. Fundamental elastic field in an infinite plane of two-dimensional piezoelectric quasicrystal subjected to multi-physics loads. Applied Mathematical Modelling, 52:186-196.

[34]Yang B, Ding HJ, Chen WQ, 2012. Elasticity solutions for functionally graded rectangular plates with two opposite edges simply supported. Applied Mathematical Modelling, 36(1):488-503.

[35]Yang LZ, Gao Y, Pan EN, et al., 2015. An exact closed-form solution for a multilayered one-dimensional orthorhombic quasicrystal plate. Acta Mechanica, 226(11):3611-3621.

[36]Yaslan HÇ, 2013. Equations of anisotropic elastodynamics in 3D quasicrystals as a symmetric hyperbolic system: deriving the time-dependent fundamental solutions. Applied Mathematical Modelling, 37(18-19):8409-8418.

[37]Ying J, Lü CF, Lim CW, 2009. 3D thermoelasticity solutions for functionally graded thick plates. Journal of Zhejiang University SCIENCE A, 10(3):327-336.

[38]Zhao MH, Dang HY, Fan CY, et al., 2017. Analysis of a three-dimensional arbitrarily shaped interface crack in a one-dimensional hexagonal thermo-electro-elastic quasicrystal bi-material. Part 1: theoretical solution. Engineering Fracture Mechanics, 179:59-78.

[39]Zhao MH, Li Y, Fan CY, et al., 2018. Analysis of arbitrarily shaped planar cracks in two-dimensional hexagonal quasicrystals with thermal effects. Part I: theoretical solutions. Applied Mathematical Modelling, 57:583-602.

[40]Zhou YB, Li XF, 2018. Two collinear mode-III cracks in one-dimensional hexagonal piezoelectric quasicrystal strip. Engineering Fracture Mechanics, 189:133-147.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE