Full Text:   <731>

Summary:  <95>

Suppl. Mater.: 

CLC number: 

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2024-09-29

Cited: 0

Clicked: 987

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Benkun TAN

https://orcid.org/0000-0002-0949-9288

Jialin SHI

https://orcid.org/0009-0003-8616-8559

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2024 Vol.25 No.9 P.732-748

http://doi.org/10.1631/jzus.A2300441


Temperature field prediction of steel-concrete composite decks using TVFEMD-stacking ensemble algorithm


Author(s):  Benkun TAN, Da WANG, Jialin SHI, Lianqi ZHANG

Affiliation(s):  School of Civil Engineering, Changsha University of Science & Technology, Changsha 410114, China; more

Corresponding email(s):   tanbenkun@yeah.net

Key Words:  Steel-concrete composite deck (SCCD), Temperature field, Time-varying filtering-based empirical mode decomposition (TVFEMD), Feature selection, Machine learning (ML)


Benkun TAN, Da WANG, Jialin SHI, Lianqi ZHANG. Temperature field prediction of steel-concrete composite decks using TVFEMD-stacking ensemble algorithm[J]. Journal of Zhejiang University Science A, 2024, 25(9): 732-748.

@article{title="Temperature field prediction of steel-concrete composite decks using TVFEMD-stacking ensemble algorithm",
author="Benkun TAN, Da WANG, Jialin SHI, Lianqi ZHANG",
journal="Journal of Zhejiang University Science A",
volume="25",
number="9",
pages="732-748",
year="2024",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A2300441"
}

%0 Journal Article
%T Temperature field prediction of steel-concrete composite decks using TVFEMD-stacking ensemble algorithm
%A Benkun TAN
%A Da WANG
%A Jialin SHI
%A Lianqi ZHANG
%J Journal of Zhejiang University SCIENCE A
%V 25
%N 9
%P 732-748
%@ 1673-565X
%D 2024
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A2300441

TY - JOUR
T1 - Temperature field prediction of steel-concrete composite decks using TVFEMD-stacking ensemble algorithm
A1 - Benkun TAN
A1 - Da WANG
A1 - Jialin SHI
A1 - Lianqi ZHANG
J0 - Journal of Zhejiang University Science A
VL - 25
IS - 9
SP - 732
EP - 748
%@ 1673-565X
Y1 - 2024
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A2300441


Abstract: 
This research aims to develop an advanced deep learning-based ensemble algorithm, utilizing environmental temperature and solar radiation as feature factors, to conduct hourly temperature field predictions for steel-concrete composite decks (SCCDs). The proposed model comprises feature parameter lag selection, two non-stationary time series decomposition methods (empirical mode decomposition (EMD) and time-varying filtering-based empirical mode decomposition (TVFEMD)), and a stacking ensemble prediction model. To validate the proposed model, five machine learning (ML) models (random forest (RF), support vector regression (SVR), multilayer perceptron (MLP), gradient boosting regression (GBR), and extreme gradient boosting (XGBoost)) were tested as base learners and evaluations were conducted within independent, mixed, and ensemble frameworks. Finally, predictions are made based on engineering cases. The results indicate that consideration of lag variables and modal decomposition can significantly improve the prediction performance of learners, and the stacking framework, which combines multiple learners, achieves superior prediction results. The proposed method demonstrates a high degree of predictive robustness and can be applied to statistical analysis of the temperature field in SCCDs. Incorporating time lag features helps account for the delayed heat dissipation phenomenon in concrete, while decomposition techniques assist in feature extraction.

基于TVFEMD-Stacking集成算法的钢-混凝土组合桥面板温度场预测

作者:谭本坤1,2,王达1,3,石佳林3,张连奇1
机构:1长沙理工大学,土木工程学院,中国长沙,410114;2湖南文理学院,土木建筑工程学院,中国常德,415000;3中南林业科技大学,土木工程学院,中国长沙,410004
目的:钢-混组合桥面系在环境作用下的温度场精确预测对保证大跨度悬索桥使用安全具有重要意义。但现有基于健康监测及数值模拟的方法存在设备维护成本较高和计算效率低等缺陷,而基于单一机器学习模型的预测方法对参数敏感性较弱或泛化能力较差。本文期望通过时变经验模态分解对输入参数进行处理,并与Stacking集成算法结合建立一种新的预测模型,以提高钢-混组合桥面系温度场的预测效率及精度。
创新点:1.通过健康监测数据与数值模拟相结合的方法建立温度场数据库;2.使用时滞量分析及时变经验模态分解方法进行特征工程从而提提高预测精度;3.建立一种基于Stacking集成学习的温度场预测模型。
方法:1.以某大跨度悬索桥钢-混组合桥面系为工程背景,在健康监测数据验证数值分析模型的基础上,形成温度场数据库(图4);2.通过特征参数滞后分析及时变经验模态分解(TVFEMD)预先对输入特征进行处理,以针对性解决传热性差异及非平稳时间序列特征的问题(图7);3.选用随机森林(RF)、支持向量回归(SVR)、多层感知器(MLP)、梯度增强回归(GBR)及极限梯度增强回归(XGBoost)四种机器学习模型作为基学习器,Elastic Net模型作为元学习器,建立Stacking集成学习模型(图3);4.采用上述单一模型及集成模型对比分析输入参数滞后处理及参数特征分解对模型预测精度的影响,通过泰勒图、误差分析、预测结果统计分析多方面评价模型精度及泛化能力(图10~14)。
结论:1.考虑时滞量和时变经验模态分解对输入特征进行处理可以有效提高单个机器学习模型的预测精度,Stacking集成算法能使预测误差得到进一步降低;2.TVFEMD-Stacking预测结果的统计参数与目标值吻合较好,可为进一步的温度场概率分析和长寿命周期下的温度梯度效应研究提供参考。

关键词:钢-混组合桥面板;温度场;时变经验模态分解;特征选择;机器学习

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]BoudraaAO, CexusJC, 2007. EMD-based signal filtering. IEEE Transactions on Instrumentation and Measurement, 56(6):2196-2202.

[2]BrancoFA, MendesPA, 1993. Thermal actions for concrete bridge design. Journal of Structural Engineering, 119(8):2313-2331.

[3]BrooDG, Bravo-HaroM, SchoolingJ, 2022. Design and implementation of a smart infrastructure digital twin. Automation in Construction, 136:104171.

[4]CatbasFN, SusoyM, FrangopolDM, 2008. Structural health monitoring and reliability estimation: long span truss bridge application with environmental monitoring data. Engineering Structures, 30(9):2347-2359.

[5]ChenFH, ZhangHP, LiZC, et al., 2024. Residual stresses effects on fatigue crack growth behavior of rib-to-deck double-sided welded joints in orthotropic steel decks. Advances in Structural Engineering, 27(1):35-50.

[6]FanJS, LiuYF, LiuC, 2021. Experiment study and refined modeling of temperature field of steel-concrete composite beam bridges. Engineering Structures, 240:112350.

[7]FanJS, LiBL, LiuC, et al., 2022. An efficient model for simulation of temperature field of steel-concrete composite beam bridges. Structures, 43:1868-1880.

[8]FigueiredoE, SantosLO, MoldovanI, et al., 2023. A roadmap for an integrated assessment approach to the adaptation of concrete bridges to climate change. Journal of Bridge Engineering, 28(6):03123002.

[9]FlahM, NunezI, ChaabeneWB, et al., 2021. Machine learning algorithms in civil structural health monitoring: a systematic review. Archives of Computational Methods in Engineering, 28(4):2621-2643.

[10]FriedmanJH, 2001. Greedy function approximation: a gradient boosting machine. The Annals of Statistics, 29(5):‍‍1189-1232.

[11]FuWW, SunBC, WanHP, et al., 2022. A Gaussian processes-based approach for damage detection of concrete structure using temperature-induced strain. Engineering Structures, 268:114740.

[12]GiussaniF, 2009. The effects of temperature variations on the long-term behaviour of composite steel–concrete beams. Engineering Structures, 31(10):2392-2406.

[13]HanQH, MaQ, XuJ, et al., 2021. Structural health monitoring research under varying temperature condition: a review. Journal of Civil Structural Health Monitoring, 11(1):149-173.

[14]InnocenziRD, NicolettiV, ArezzoD, et al., 2022. A good practice for the proof testing of cable-stayed bridges. Applied Sciences, 12(7):3547.

[15]JameiM, KarbasiM, AliM, et al., 2023. A novel global solar exposure forecasting model based on air temperature: designing a new multi-processing ensemble deep learning paradigm. Expert Systems with Applications, 222:119811.

[16]LeeJH, 2012. Investigation of extreme environmental conditions and design thermal gradients during construction for prestressed concrete bridge girders. Journal of Bridge Engineering, 17(3):547-556.

[17]LiuHJ, ChenC, GuoZQ, et al., 2021. Overall grouting compactness detection of bridge prestressed bellows based on RF feature selection and the GA-SVM model. Construction and Building Materials, 301:124323.

[18]LiuJ, LiuYJ, ZhangCY, et al., 2020. Temperature action and effect of concrete-filled steel tubular bridges: a review. Journal of Traffic and Transportation Engineering, 7(2):174-191.

[19]LuoY, LiuXF, ChenFH, et al., 2023. Numerical simulation on crack‍–‍inclusion interaction for rib-to-deck welded joints in orthotropic steel deck. Metals, 13(8):1402.

[20]NarasimhanTN, 1999. Fourier’s heat conduction equation: history, influence, and connections. Reviews of Geophysics, 37(1):151-172.

[21]NguyenH, VuT, VoTP, et al., 2021. Efficient machine learning models for prediction of concrete strengths. Construction and Building Materials, 266:120950.

[22]NicolettiV, QuarchioniS, TentellaL, et al., 2023. Experimental tests and numerical analyses for the dynamic characterization of a steel and wooden cable-stayed footbridge. Infrastructures, 8(6):100.

[23]OpokuDGJ, PereraS, Osei-KyeiR, et al., 2021. Digital twin application in the construction industry: a literature review. Journal of Building Engineering, 40:102726.

[24]QinYH, HillerJE, 2011. Modeling temperature distribution in rigid pavement slabs: impact of air temperature. Construction and Building Materials, 25(9):3753-3761.

[25]RichmanJS, MoormanJR, 2000. Physiological time-series analysis using approximate entropy and sample entropy. American Journal of Physiology-Heart and Circulatory Physiology, 278(6):H2039-H2049.

[26]ShengXW, ZhouTM, HuangSJ, et al., 2022. Prediction of vertical temperature gradient on concrete box-girder considering different locations in China. Case Studies in Construction Materials, 16:e01026.

[27]ShiT, LouP, ZhengWQ, et al., 2022. A hybrid approach to predict vertical temperature gradient of ballastless track caused by solar radiation. Construction and Building Materials, 352:129063.

[28]ShimCS, LeePG, ChangSP, 2001. Design of shear connection in composite steel and concrete bridges with precast decks. Journal of Constructional Steel Research, 57(3):203-219.

[29]SohnH, DzwonczykM, StraserEG, et al., 1999. An experimental study of temperature effect on modal parameters of the Alamosa Canyon Bridge. Earthquake Engineering & Structural Dynamics, 28(8):879-897. https://doi.‍org/10.1002/(SICI)1096-9845(199908)28:‍8<879::AID-EQE845>3.0.CO;2-V

[30]SugumaranV, MuralidharanV, RamachandranKI, 2007. Feature selection using decision tree and classification through proximal support vector machine for fault diagnostics of roller bearing. Mechanical Systems and Signal Processing, 21(2):930-942.

[31]TaylorKE, 2001. Summarizing multiple aspects of model performance in a single diagram. Journal of Geophysical Research: Atmospheres, 106(D7):7183-7192.

[32]TongM, ThamLG, AuFTK, 2002. Extreme thermal loading on steel bridges in tropical region. Journal of Bridge Engineering, 7(6):357-366.

[33]WangD, LiuYM, LiuY, 2018. 3D temperature gradient effect on a steel-concrete composite deck in a suspension bridge with field monitoring data. Structural Control and Health Monitoring, 25(7):e2179.

[34]WangD, TanBK, WangX, et al., 2021. Experimental study and numerical simulation of temperature gradient effect for steel-concrete composite bridge deck. Measurement and Control, 54(5-6):681-691.

[35]WangJ, DuXY, QiX, 2022. Strain prediction for historical timber buildings with a hybrid Prophet-XGBoost model. Mechanical Systems and Signal Processing, 179:109316.

[36]WangZW, ZhangWM, TianGM, et al., 2020. Joint values determination of wind and temperature actions on long-span bridges: copula-based analysis using long-term meteorological data. Engineering Structures, 219:110866.

[37]WedelF, MarxS, 2022. Application of machine learning methods on real bridge monitoring data. Engineering Structures, 250:113365.

[38]XinJZ, ZhouCY, JiangY, et al., 2023. A signal recovery method for bridge monitoring system using TVFEMD and encoder-decoder aided LSTM. Measurement, 214:112797.

[39]ZhangCY, LiuYJ, LiuJ, et al., 2020. Validation of long-term temperature simulations in a steel-concrete composite girder. Structures, 27:1962-1976.

[40]ZhangPJ, WangCS, WuGS, et al., 2022. Temperature gradient models of steel-concrete composite girder based on long-term monitoring data. Journal of Constructional Steel Research, 194:107309.

[41]ZhangZJ, LiuYJ, LiuJ, et al., 2023. Experimental study and analysis for the long-term behavior of the steel–concrete composite girder bridge. Structures, 51:1305-1327.

[42]ZhaoHW, DingYL, LiAQ, et al., 2023. Digital modeling approach of distributional mapping from structural temperature field to temperature-induced strain field for bridges. Journal of Civil Structural Health Monitoring, 13(1):251-267.

[43]ZouH, HastieT, 2005. Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology, 67(2):301-320.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE