Full Text:   <12319>

Summary:  <2865>

CLC number: R736.1

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2014-02-21

Cited: 9

Clicked: 14186

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2014 Vol.15 No.3 P.212-224

http://doi.org/10.1631/jzus.B1300192


Deregulation of microRNA expression in thyroid tumors*


Author(s):  Zi-ming Yuan, Zhi-li Yang, Qi Zheng

Affiliation(s):  . Department of General Surgery, Shanghai Sixth Peoples Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China

Corresponding email(s):   zhengqi1957@aliyun.com

Key Words:  MicroRNA, Target gene, Thyroid tumor, Single nucleotide polymorphism (SNP), Somatic mutation


Zi-ming Yuan, Zhi-li Yang, Qi Zheng. Deregulation of microRNA expression in thyroid tumors[J]. Journal of Zhejiang University Science B, 2014, 15(3): 212-224.

@article{title="Deregulation of microRNA expression in thyroid tumors",
author="Zi-ming Yuan, Zhi-li Yang, Qi Zheng",
journal="Journal of Zhejiang University Science B",
volume="15",
number="3",
pages="212-224",
year="2014",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1300192"
}

%0 Journal Article
%T Deregulation of microRNA expression in thyroid tumors
%A Zi-ming Yuan
%A Zhi-li Yang
%A Qi Zheng
%J Journal of Zhejiang University SCIENCE B
%V 15
%N 3
%P 212-224
%@ 1673-1581
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1300192

TY - JOUR
T1 - Deregulation of microRNA expression in thyroid tumors
A1 - Zi-ming Yuan
A1 - Zhi-li Yang
A1 - Qi Zheng
J0 - Journal of Zhejiang University Science B
VL - 15
IS - 3
SP - 212
EP - 224
%@ 1673-1581
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1300192


Abstract: 
microRNAs (miRNAs or miRs) are endogenous non-coding RNAs that negatively regulate gene expression by binding to the 3' non-coding regions of target mRNAs, resulting in their cleavage or blocking their translation. miRNAs may have an impact on cell differentiation, proliferation, and survival, and their deregulation can be inclined to diseases and cancers, including thyroid tumors. The purpose of this review is to summarize the existing findings of deregulated miRNAs in different types of thyroid tumors and to exhibit their potential target genes, especially to demonstrate those involved in tumor invasion and metastasis. In addition, new findings of circulating miRNA expression profiles, single nucleotide polymorphism (SNP) in thyroid tumors, and the correlation of somatic mutations with deregulated miRNA expression in thyroid tumors were all included in this review.

甲状腺肿瘤中microRNA表达失调的研究进展

研究目的:MicroRNAs(miRNAs或miRs)是一种内源性非编码RNA,通过与信使RNA(mRNA)的3'非编码区结合,引起mRNA的断裂或蛋白质翻译的阻断,进而对基因表达进行负性调控。miRNAs可影响细胞的分化、增殖和生存等过程,其表达失调有引起疾病甚至肿瘤的可能。miRNA表达失调已在多种人类肿瘤中出现,包括甲状腺肿瘤。本文对不同类型的甲状腺肿瘤中出现的miRNAs表达失调及miRNAs可能的下游靶基因进行综述,为甲状腺肿瘤的临床诊断及治疗提供依据。
创新要点:已有大量关于滤泡细胞起源,尤其是乳头状甲状腺癌(PTC)中miRNAs表达失调的综述,但对C细胞起源的甲状腺髓样癌(MTC)中miRNAs表达失调的研究并未形成系统。同时,在此之前没有关于各型甲状腺肿瘤miRNAs表达与其靶基因的综述报道。在这篇综述中,我们还列入了对甲状腺肿瘤患者外周循环血液中miRNAs表达谱的最新研究以及单核苷酸多态性(SNP)对甲状腺肿瘤的影响。
重要结论:总结了miRNAs在各型甲状腺肿瘤中的表达谱(见表1、3、4、6);描述了在各型甲状腺肿瘤中不同miRNAs潜在的靶基因及其在肿瘤发生、发展、浸润、转移等多方面的作用(见图1;表2、5)。

关键词:MicroRNA;靶基因;甲状腺肿瘤;单核苷酸多态性;体细胞突变

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

References

[1] Abraham, D., Jackson, N., Gundara, J.S., 2011. MicroRNA profiling of sporadic and hereditary medullary thyroid cancer identifies predictors of nodal metastasis, prognosis, and potential therapeutic targets. Clin Cancer Res, 17(14):4772-4781. 


[2] Agretti, P., Ferrarini, E., Rago, T., 2012. MicroRNA expression profile helps to distinguish benign nodules from papillary thyroid carcinomas starting from cells of fine-needle aspiration. Eur J Endocrinol, 167(3):393-400. 


[3] Ambros, V., 2004. The functions of animal microRNAs. Nature, 431(7006):350-355. 


[4] Argraves, W.S., Greene, L.M., Cooley, M.A., 2003. Fibulins: physiological and disease perspectives. EMBO Rep, 4(12):1127-1131. 


[5] Bartel, D.P., 2004. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116(2):281-297. 


[6] Bhaumik, D., Scott, G.K., Schokrpur, S., 2008. Expression of microRNA-146 suppresses NF-κB activity with reduction of metastatic potential in breast cancer cells. Oncogene, 27(42):5643-5647. 


[7] Boucheix, C., Duc, G.H., Jasmin, C., 2001. Tetraspanins and malignancy. Expert Rev Mol Med, 3(4):1-17. 


[8] Braun, J., Httelmaier, S., 2011. Pathogenic mechanisms of deregulated microRNA expression in thyroid carcinomas of follicular origin. Thyroid Res, 4(Suppl. 1):S1


[9] Braun, J., Hoang-Vu, C., Dralle, H., 2010. Downregulation of microRNAs directs the EMT and invasive potential of anaplastic thyroid carcinomas. Oncogene, 29(29):4237-4244. 


[10] Cameron, J.E., Yin, Q., Fewell, C., 2008. Epstein-Barr virus latent membrane protein 1 induces cellular microRNA miR-146a, a modulator of lymphocyte signaling pathways. J Virol, 82(4):1946-1958. 


[11] Carraro, G., El-Hashash, A., Guidolin, D., 2009. miR-17 family of microRNAs controls FGF10-mediated embryonic lung epithelial branching morphogenesis through MAPK14 and STAT3 regulation of E-cadherin distribution. Dev Biol, 333(2):238-250. 


[12] Castellone, M.D., Guarino, V., de Falco, V., 2004. Functional expression of the CXCR4 chemokine receptor is induced by RET/PTC oncogenes and is a common event in human papillary thyroid carcinomas. Oncogene, 23(35):5958-5967. 


[13] Chen, Y.T., Kitabayashi, N., Zhou, X.K., 2008. MicroRNA analysis as a potential diagnostic tool for papillary thyroid carcinoma. Mod Pathol, 21(9):1139-1146. 


[14] Chiappetta, G., Ferraro, A., Vuttariello, E., 2008.  HMGA2 mRNA expression correlates with the malignant phenotypein human thyroid neoplasias. Eur J Cancer, 44(7):1015-1021. 


[15] Chin, L., Hahn, W.C., Getz, G., 2011. Making sense of cancer genomic data. Genes Dev, 25(6):534-555. 


[16] Chou, C.K., Chen, R.F., Chou, F.F., 2010. miR-146b is highly expressed in adult papillary thyroid carcinomas with high risk features including extrathyroidal invasion and the BRAF V600E mutation. Thyroid, 20(5):489-494. 


[17] Ciafr, S.A., Galardi, S., Mangiola, A., 2005. Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem Biopys Res Commun, 334(4):1351-1358. 


[18] Colamaio, M., Borbone, E., Russo, L., 2011. miR-191 down-regulation plays a role in thyroid follicular tumors through CDK6 targeting. J Clin Endocrinol Metab, 96(12):E1915-E1924. 


[19] Cowland, J.B., Hother, C., Grnbaek, K., 2007. MicroRNAs and cancer. APMIS, 115(10):1090-1106. 


[20] Dean, D.S., Gharib, H., 2008. Epidemiology of thyroid nodules. Best Pract Res Clin Endocrinol Metab, 22(6):901-911. 


[21] Elisei, R., Ugolini, C., Viola, D., 2008.  BRAF V600E mutation and outcome of patients with papillary thyroid carcinoma: a 15-year median follow-up study. J Clin Endocrinol Metab, 93(10):3943-3949. 


[22] Elisei, R., Cosci, B., Romei, C., 2008. Prognostic significance of somatic RET oncogene mutations in sporadic medullary thyroid cancer: a 10-year follow-up study. J Clin Endocrinol Metab, 93(3):682-687. 


[23] Esposito, F., Tornincasa, M., Pallante, P., 2012. Down-regulation of the miR-25 and miR-30d contributes to the development of anaplastic thyroid carcinoma targeting the polycomb protein EZH2. J Clin Endocrinol Metab, 97(5):E710-E718. 


[24] Fagin, J.A., Mitsiades, N., 2008. Molecular pathology of thyroid cancer: diagnostic and clinical implications. Best Pract Res Clin Endocrinol Metab, 22(6):955-969. 


[25] Felli, N., Fontana, L., Pelosi, E., 2005. MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. PNAS, 102(50):18081-18086. 


[26] Ferraz, C., Eszlinger, M., Paschke, R., 2011. Current state and future perspective of molecular diagnosis of fine-needle aspiration biopsy of thyroid nodules. J Clin Endocrinol Metab, 96(7):2016-2026. 


[27] Frezzetti, D., Reale, C., Cal, G., 2011. The microRNA-processing enzyme Dicer is essential for thyroid function. PLoS ONE, 6(11):e27648


[28] Frezzetti, D., de Menna, M., Zoppoli, P., 2011. Upregulation of miR-21 by Ras in vivo and its role in tumor growth. Oncogene, 30(3):275-286. 


[29] Galardi, S., Mercatelli, N., Giorda, E., 2007. miR-221 and miR-222 expression affects the proliferation potential of human prostate carcinoma cell lines by targeting p27Kip1 J Biol Chem, 282(32):23716-23724. 


[30] Gallagher, W.M., Greene, L.M., Ryan, M.P., 2001. Human fibulin-4: analysis of its biosynthetic processing and mRNA expression in normal and tumour tissues. FEBS Lett, 489(1):59-66. 


[31] Gao, Y., Wang, C., Shan, Z., 2010. miRNA expression in a human papillary thyroid carcinoma cell line varies with invasiveness. Endocr J, 57(1):81-86. 


[32] Garofalo, M., Quintavalle, C., di Leva, G., 2008. MicroRNA signatures of TRAIL resistance in human non-small cell lung cancer. Oncogene, 27(27):3845-3855. 


[33] Garzia, L., Andolfo, I., Cusanelli, E., 2009. MicroRNA-199b-5p impairs cancer stem cells through negative regulation of HES1 in medulloblastoma. PLoS ONE, 4(3):e4998


[34] Gebeshuber, C.A., Zatloukal, K., Martinez, J., 2009. miR-29a suppresses tristetraprolin, which is a regulator of epithelial polarity and metastasis. EMBO Rep, 10(4):400-405. 


[35] Geraldo, M.V., Yamashita, A.S., Kimura, E.T., 2012. MicroRNA miR-146b-5p regulates signal transduction of TGF-β by repressing SMAD4 in thyroid cancer. Oncogene, 31(15):1910-1922. 


[36] Gharib, H., 2004. Changing trends in thyroid practice: understanding nodular thyroid disease. Endocr Pract, 10(1):31-39. 


[37] Gregory, P.A., Bracken, C.P., Bert, A.G., 2008. MicroRNAs as regulators of epithelial-mesenchymal transition. Cell Cycle, 7(20):3112-3118. 


[38] Guo, C.J., Pan, Q., Li, D.G., 2009. miR-15b and miR-16 are implicated in activation of the rat hepatic stellate cell: an essential role for apoptosis. J Hepatol, 50(4):766-778. 


[39] He, H., Jazdzewski, K., Li, W., 2005. The role of microRNA genes in papillary thyroid carcinoma. PNAS, 102(52):19075-19080. 


[40] Huang, Y., Shen, X.J., Zou, Q., 2010. Biological functions of microRNAs: a review. J Physiol Biochem, 67(1):129-139. 


[41] Hurst, D.R., Edmonds, M.D., Scott, G.K., 2009. Breast cancer metastasis suppressor 1 up-regulates miR-146, which suppresses breast cancer metastasis. Cancer Res, 69(4):1279-1283. 


[42] Jazdzewski, K., Murray, E.L., Franssila, K., 2008. Common SNP in pre-miR-146a decreases mature miR expression and predisposes to papillary thyroid carcinoma. PNAS, 105(20):7269-7274. 


[43] Knauf, J.A., Ma, X., Smith, E.P., 2005. Targeted expression of BRAF V600E in thyroid cells of transgenic mice results in papillary thyroid cancers that undergo dedifferentiation. Cancer Res, 65(10):4238-4245. 


[44] Kondo, T., Ezzat, S., Asa, S.L., 2006. Pathogenetic mechanisms in thyroid follicular-cell neoplasia. Nat Rev Cancer, 6(4):292-306. 


[45] Korpal, M., Kang, Y., 2008. The emerging role of miR-200 family of microRNAs in epithelial-mesenchymal transition and cancer metastasis. RNA Biol, 5(3):115-119. 


[46] Kota, J., Chivukula, R.R., ODonnell, K.A., 2009. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell, 137(6):1005-1017. 


[47] Ku, G., McManus, M.T., 2008. Behind the scenes of a small RNA gene-silencing pathway. Hum Gene Ther, 19(1):17-26. 


[48] Labbaye, C., Spinello, I., Quaranta, M.T., 2008. A three-step pathway comprising PLZF/miR-146a/CXCR4 controls megakaryopoiesis. Nat Cell Biol, 10(7):788-801. 


[49] Landi, D., Gemignani, F., Landi, S., 2012. Role of variations within microRNA-binding sites in cancer. Mutagenesis, 27(2):205-210. 


[50] Leone, V., DAngelo, D., Rubio, I., 2011. miR-1 is a tumor suppressor in thyroid carcinogenesis targeting CCND2, CXCR4, and SDF-1αJ Clin Endocrinol Metab, 96(9):E1388-E1398. 


[51] Liu, X., Cheng, Y., Yang, J., 2012. Cell-specific effects of miR-221/222 in vessels: molecular mechanism and therapeutic application. J Mol Cell Cardiol, 52(1):245-255. 


[52] Marini, F., Luzi, E., Brandi, M.L., 2011. MicroRNA role in thyroid cancer development. J Thyroid Res, 2011:407123


[53] Mattie, M.D., Benz, C.C., Bowers, J., 2006. Optimized high-throughput microRNA expression profiling provides novel biomarker assessment of clinical prostate and breast cancer biopsies. Mol Cancer, 5(1):24


[54] Mazeh, H., 2012. MicroRNA as a diagnostic tool in fine-needle aspiration biopsy of thyroid nodules. Oncologist, 17(8):1032-1038. 


[55] McHenry, C.R., Phitayakorn, R., 2011. Follicular adenoma and carcinoma of the thyroid gland. Oncologist, 16(5):585-593. 


[56] Menon, M.P., Khan, A., 2009. micro-RNAs in thyroid neoplasms: molecular, diagnostic and therapeutic implications. J Clin Pathol, 62(11):978-985. 


[57] Mian, C., Pennelli, G., Fassan, M., 2012. MicroRNA profiles in familial and sporadic medullary thyroid carcinoma: preliminary relationships with RET status and outcome. Thyroid, 22(9):890-896. 


[58] Mitomo, S., Maesawa, C., Ogasawara, S., 2008. Downregulation of miR-138 is associated with overexpression of human telomerase reverse transcriptase protein in human anaplastic thyroid carcinoma cell lines. Cancer Sci, 99(2):280-286. 


[59] Mitsiades, C.S., Negri, J., McMullan, C., 2007. Targeting BRAF V600E in thyroid carcinoma: therapeutic implications. Mol Cancer Ther, 6(3):1070-1078. 


[60] Murakami, Y., Yasuda, T., Saigo, K., 2006. Comprehensive analysis of microRNA expression patterns in hepatocellular carcinoma and non-tumorous tissues. Oncogene, 25(17):2537-2545. 


[61] Nikiforov, Y.E., Nikiforova, M.N., 2011. Molecular genetics and diagnosis of thyroid cancer. Nat Rev Endocrinol, 7(10):569-580. 


[62] Nikiforova, M.N., Tseng, G.C., Steward, D., 2008. MicroRNA expression profiling of thyroid tumors: biological significance and diagnostic utility. J Clin Endocrinol Metab, 93(5):1600-1608. 


[63] Nikiforova, M.N., Chiosea, S.I., Nikiforov, Y.E., 2009. MicroRNA expression profiles in thyroid tumors. Endocr Pathol, 20(2):85-91. 


[64] Pallante, P., Visone, R., Croce, C.M., 2010. Deregulation of microRNA expression in follicular-cell-derived human thyroid carcinomas. Endocr Relat Cancer, 17(1):91-104. 


[65] Ponta, H., Hofmann, M., Herrlich, P., 2001. Recent advances in the genetics of metastasis. Eur J Cancer, 30A(13):1995-2001. 

[66] Ricarte-Filho, J.C., Fuziwara, C.S., Yamashita, A.S., 2009. Effects of let-7 microRNA on cell growth and differentiation of papillary thyroid cancer. Transl Oncol, 2(4):236-241. 


[67] Schulte, K.M., Jonas, C., Krebs, R., 2001. Activin A and activin receptors in thyroid cancer. Thyroid, 11(1):3-14. 


[68] Schwertheim, S., Sheu, S.Y., Worm, K., 2009. Analysis of deregulated miRNAs is helpful to distinguish poorly differentiated thyroid carcinoma from papillary thyroid carcinoma. Horm Metab Res, 41(6):475-481. 


[69] Shastry, B.S., 2009. SNPs: impact on gene function and phenotype. Single Nucleotide Polymorphisms, Springer,:3-22. 


[70] Sheu, S.Y., Grabellus, F., Schwertheim, S., 2010. Differential miRNA expression profiles in variants of papillary thyroid carcinoma and encapsulated follicular thyroid tumours. Br J Cancer, 102(2):376-382. 


[71] Shibru, D., Chung, K.W., Kebebew, E., 2008. Recent developments in the clinical application of thyroid cancer biomarkers. Curr Opin Oncol, 20(1):13-18. 


[72] Taganov, K.D., Boldin, M.P., Chang, K.J., 2006. NF-κB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. PNAS, 103(33):12481-12486. 


[73] Takakura, S., Mitsutake, N., Nakashima, M., 2008. Oncogenic role of miR-17-92 cluster in anaplastic thyroid cancer cells. Cancer Sci, 99(6):1147-1154. 


[74] Tetzlaff, M.T., Liu, A., Xu, X., 2007. Differential expression of miRNAs in papillary thyroid carcinoma compared to multinodular goiter using formalin fixed paraffin embedded tissues. Endocr Pathol, 18(3):163-173. 


[75] Visone, R., Pallante, P., Vecchione, A., 2007. Specific microRNAs are downregulated in human thyroid anaplastic carcinomas. Oncogene, 26(54):7590-7595. 


[76] Vriens, M.R., Schreinemakers, J.M., Suh, I., 2009. Diagnostic markers and prognostic factors in thyroid cancer. Future Oncol, 5(8):1283-1293. 


[77] Vriens, M.R., Weng, J., Suh, I., 2012. MicroRNA expression profiling is a potential diagnostic tool for thyroid cancer. Cancer, 118(13):3426-3432. 


[78] Wan, P.T., Garnett, M.J., Roe, S.M., 2004. Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAFCell, 116(6):855-867. 


[79] Wang, J., Wang, Q., Liu, H., 2012. The association of miR-146a rs2910164 and miR-196a2 rs11614913 polymorphisms with cancer risk: a meta-analysis of 32 studies. Mutagenesis, 27(6):779-788. 


[80] Weber, F., Teresi, R.E., Broelsch, C.E., 2006. A limited set of human microRNA is deregulated in follicular thyroid carcinoma. J Clin Endocrinol Metab, 91(9):3584-3591. 


[81] Wellbrock, C., Karasarides, M., Marais, R., 2004. The RAF proteins take centre stage. Nat Rev Mol Cell Biol, 5(11):875-885. 


[82] Wlazlinski, A., Engers, R., Hoffmann, M.J., 2007. Downregulation of several fibulin genes in prostate cancer. Prostate, 67(16):1770-1780. 


[83] Wojciechowska, K., Lewinski, A., 2006.  BRAF mutations in papillary thyroid carcinoma. Endocr Regul, 40(4):129-138. 


[84] Xing, M., 2007.  BRAF mutation in papillary thyroid cancer: pathogenic role, molecular bases, and clinical implications. Endocr Rev, 28(7):742-762. 


[85] Xiong, Y., Zhang, L., Holloway, A.K., 2011. miR-886-3p regulates cell proliferation and migration, and is dysregulated in familial non-medullary thyroid cancer. PLoS ONE, 6(10):e24717


[86] Yau, T., Lo, C.Y., Epstein, R.J., 2008. Treatment outcomes in anaplastic thyroid carcinoma: survival improvement in young patients with localized disease treated by combination of surgery and radiotherapy. Ann Surg Oncol, 15(9):2500-2505. 


[87] Yip, L., Nikiforova, M.N., Carty, S.E., 2009. Optimizing surgical treatment of papillary thyroid carcinoma associated with BRAF mutation. Surgery, 146(6):1215-1223. 


[88] Yip, L., Kelly, L., Shuai, Y., 2011. MicroRNA signature distinguishes the degree of aggressiveness of papillary thyroid carcinoma. Ann Surg Oncol, 18(7):2035-2041. 


[89] Yu, S., Liu, Y., Wang, J., 2012. Circulating microRNA profiles as potential biomarkers for diagnosis of papillary thyroid carcinoma. J Clin Endocrinol Metab, 97(6):2084-2092. 


[90] Yue, C., Wang, M., Ding, B., 2011. Polymorphism of the pre-miR-146a is associated with risk of cervical cancer in a Chinese population. Gynecol Oncol, 122(1):33-37. 


[91] Zhou, B., Wang, K., Wang, Y., 2011. Common genetic polymorphisms in pre-microRNAs and risk of cervical squamous cell carcinoma. Mol Carcinog, 50(7):499-505. 


[92] Zhu, H., Wu, H., Liu, X., 2009. Regulation of autophagy by a beclin 1-targeted microRNA, miR-30a, in cancer cells. Autophagy, 5(6):816-823. 



Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE