Full Text:   <2529>

Summary:  <2023>

CLC number: TP391

On-line Access: 2015-03-04

Received: 2014-07-09

Revision Accepted: 2014-10-29

Crosschecked: 2015-02-04

Cited: 1

Clicked: 7720

Citations:  Bibtex RefMan EndNote GB/T7714


Leonardo Fernández-Jambrina


-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2015 Vol.16 No.3 P.173-190


Interpolation of a spline developable surface between a curve and two rulings

Author(s):  Alicia Cantón, Leonardo Fernández-Jambrina

Affiliation(s):  ETSI Navales, Universidad Politécnica de Madrid, Arco de la Victoria 4, Madrid 28040, Spain

Corresponding email(s):   alicia.canton@upm.es, leonardo.fernandez@upm.es

Key Words:  Developable surfaces, Spline surfaces, Blossoms

Share this article to: More |Next Article >>>

Alicia Cantón, Leonardo Fernández-Jambrina. Interpolation of a spline developable surface between a curve and two rulings[J]. Frontiers of Information Technology & Electronic Engineering, 2015, 16(3): 173-190.

@article{title="Interpolation of a spline developable surface between a curve and two rulings",
author="Alicia Cantón, Leonardo Fernández-Jambrina",
journal="Frontiers of Information Technology & Electronic Engineering",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Interpolation of a spline developable surface between a curve and two rulings
%A Alicia Cantón
%A Leonardo Fernández-Jambrina
%J Frontiers of Information Technology & Electronic Engineering
%V 16
%N 3
%P 173-190
%@ 2095-9184
%D 2015
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.14a0210

T1 - Interpolation of a spline developable surface between a curve and two rulings
A1 - Alicia Cantón
A1 - Leonardo Fernández-Jambrina
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 16
IS - 3
SP - 173
EP - 190
%@ 2095-9184
Y1 - 2015
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.14a0210

In this paper we address the problem of interpolating a spline developable patch bounded by a given spline curve and the first and the last rulings of the developable surface. To complete the boundary of the patch, a second spline curve is to be given. Up to now this interpolation problem could be solved, but without the possibility of choosing both endpoints for the rulings. We circumvent such difficulty by resorting to degree elevation of the developable surface. This is useful for solving not only this problem, but also other problems dealing with triangular developable patches.

The work of this manuscript is a good addition to the theoretical part of developable surfaces. Although Section 5 is basically known stuff from the referenced paper Fernanderze 2007, it extended the original work with both analysis and examples.




Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1]Aumann, G., 2003. A simple algorithm for designing developable Bézier surfaces. Comput. Aided Geom. Des., 20(8-9):601-619.

[2]Aumann, G., 2004. Degree elevation and developable Bézier surfaces. Comput. Aided Geom. Des., 21(7):661-670.

[3]Bodduluri, R.M.C., Ravani, B., 1993. Design of developable surfaces using duality between plane and point geometries. Comput.-Aided Des., 25(10):621-632.

[4]Chalfant, J.S., Maekawa, T., 1998. Design for manufacturing using B-spline developable surfaces. J. Ship Res., 42(3):207-215.

[5]Chu, C.H., Séquin, C.H., 2002. Developable Bézier patches: properties and design. Comput.-Aided Des., 34(7):511-527.

[6]Chu, C.H., Wang, C.C.L., Tsai, C.R., 2008. Computer aided geometric design of strip using developable Bézier patches. Comput. Ind., 59(6):601-611.

[7]Farin, G., 1986. Triangular Bernstein-Bézier patches. Comput. Aided Geom. Des., 3(2):83-127.

[8]Farin, G., 2002. Curves and Surfaces for CAGD: a Practical Guide. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

[9]Fernández-Jambrina, L., 2007. B-spline control nets for developable surfaces. Comput. Aided Geom. Des., 24(4):189-199.

[10]Frey, W.H., Bindschadler, D., 1993. Computer Aided Design of a Class of Developable Bézier Surfaces. Technical Report, GM Research Publication R&D-8057.

[11]Hu, G., Ji, X., Qin, X., 2012. Geometric design and shape adjustment for developable B-spline surfaces with multiple shape parameters. J. Appl. Sci.-Electron. Inform. Eng., 30(3):324-330.

[12]Juhász, I., Róth, Á., 2008. Bézier surfaces with linear isoparametric lines. Comput. Aided Geom. Des., 25(6):385-396.

[13]Kilgore, U., 1967. Developable Hull Surfaces. Fishing Boats of the World, Volume 3. Fishing News Books Ltd., Surrey, p.425-431.

[14]Lang, J., Röschel, O., 1992. Developable (1,n)-Bézier surfaces. Comput. Aided Geom. Des., 9(4):291-298.

[15]Leopoldseder, S., 2001. Algorithms on cone spline surfaces and spatial osculating arc splines. Comput. Aided Geom. Des., 18(6):505-530.

[16]Liu, Y.J., Tang, K., Gong, W.Y., et al., 2011. Industrial design using interpolatory discrete developable surfaces. Comput.-Aided Des., 43(9):1089-1098.

[17]Mancewicz, M.J., Frey, W.H., 1992. Developable Surfaces: Properties, Representations and Methods of Design. Technical Report, GM Research Publication GMR-7637.

[18]Pérez, F., Suárez, J.A., 2007. Quasi-developable B-spline surfaces in ship hull design. Comput.-Aided Des., 39(10):853-862.

[19]Pérez-Arribas, F., Suárez-Suárez, J.A., Fernández-Jambrina, L., 2006. Automatic surface modelling of a ship hull. Comput.-Aided Des., 38(6):584-594.

[20]Peternell, M., 2004. Developable surface fitting to point clouds. Comput. Aided Geom. Des., 21(8):785-803.

[21]Postnikov, M.M., 1979. Lectures in Geometry: Linear Algebra and Differential Geometry. “Nauka”, Moscow.

[22]Pottmann, H., Farin, G., 1995. Developable rational Bézier and B-spline surfaces. Comput. Aided Geom. Des., 12(5):513-531.

[23]Pottmann, H., Wallner, J., 1999. Approximation algorithms for developable surfaces. Comput. Aided Geom. Des., 16(6):539-556.

[24]Pottmann, H., Wallner, J., 2001. Computational Line Geometry. Springer-Verlag, Berlin, p.327-422.

[25]Struik, D.J., 1988. Lectures on Classical Differential Geometry. Dover Publications Inc., New York, p.66-73.

[26]Zeng, L., Liu, Y.J., Chen, M., et al., 2012. Least square quasi-developable mesh approximation. Comput. Aided Geom. Des., 29(7):565-578.

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE