CLC number: TP391
On-line Access: 2015-12-07
Received: 2015-03-19
Revision Accepted: 2015-08-10
Crosschecked: 2015-11-11
Cited: 3
Clicked: 7289
Hong Shao, Shuang Chen, Jie-yi Zhao, Wen-cheng Cui, Tian-shu Yu. Face recognition based on subset selection via metric learning on manifold[J]. Frontiers of Information Technology & Electronic Engineering, 2015, 16(12): 1046-1058.
@article{title="Face recognition based on subset selection via metric learning on manifold",
author="Hong Shao, Shuang Chen, Jie-yi Zhao, Wen-cheng Cui, Tian-shu Yu",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="16",
number="12",
pages="1046-1058",
year="2015",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1500085"
}
%0 Journal Article
%T Face recognition based on subset selection via metric learning on manifold
%A Hong Shao
%A Shuang Chen
%A Jie-yi Zhao
%A Wen-cheng Cui
%A Tian-shu Yu
%J Frontiers of Information Technology & Electronic Engineering
%V 16
%N 12
%P 1046-1058
%@ 2095-9184
%D 2015
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1500085
TY - JOUR
T1 - Face recognition based on subset selection via metric learning on manifold
A1 - Hong Shao
A1 - Shuang Chen
A1 - Jie-yi Zhao
A1 - Wen-cheng Cui
A1 - Tian-shu Yu
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 16
IS - 12
SP - 1046
EP - 1058
%@ 2095-9184
Y1 - 2015
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1500085
Abstract: With the development of face recognition using sparse representation based classification (SRC), many relevant methods have been proposed and investigated. However, when the dictionary is large and the representation is sparse, only a small proportion of the elements contributes to the l1-minimization. Under this observation, several approaches have been developed to carry out an efficient element selection procedure before SRC. In this paper, we employ a metric learning approach which helps find the active elements correctly by taking into account the interclass/intraclass relationship and manifold structure of face images. After the metric has been learned, a neighborhood graph is constructed in the projected space. A fast marching algorithm is used to rapidly select the subset from the graph, and SRC is implemented for classification. Experimental results show that our method achieves promising performance and significant efficiency enhancement.
This paper solves a practical problem in the face recognition application. The proposed framework is quite intuitive and efficient. Experiments conducted on several benchmark databases validate the effectiveness of the proposed method.
[1]Arandjelović, O., Shakhnarovich, G., Fisher, J., et al., 2005. Face recognition with image sets using manifold density divergence. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, p.581-588.
[2]Belkin, M., Niyogi, P., 2001. Laplacian eigenmaps and spectral techniques for embedding and clustering. NIPS, 14:585-591.
[3]Candès, E.J., 2008. The restricted isometry property and its implications for compressed sensing. Compt. Rend. Math., 346(9-10):589-592.
[4]Candès, E.J., Tao, T., 2007. The Dantzig selector: statistical estimation when p is much larger than n. Ann. Stat., 35(6):2313-2351.
[5]Deng, W.H., Hu, J.N., Guo, J., 2012. Extended SRC: undersampled face recognition via intraclass variant dictionary. IEEE Trans. Patt. Anal. Mach. Intell., 34(9):1864-1870.
[6]Efron, B., Hastie, T., Johnstone, I., et al., 2004. Least angle regression. Ann. Stat., 32(2):407-499.
[7]Georghiades, A.S., Belhumeur, P.N., Kriegman, D., 2001. From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Trans. Patt. Anal. Mach. Intell., 23(6):643-660.
[8]He, R., Zheng, W.S., Hu, B.G., 2011. Maximum correntropy criterion for robust face recognition. IEEE Trans. Patt. Anal. Mach. Intell., 33(8):1561-1576.
[9]He, R., Zheng, W.S., Hu, B.G., et al., 2013. Two-stage nonnegative sparse representation for large-scale face recognition. IEEE Trans. Neur. Netw. Learn. Syst., 24(1):35-46.
[10]He, R., Zheng, W.S., Tan, T.N., et al., 2014. Half-quadratic-based iterative minimization for robust sparse representation. IEEE Trans. Patt. Anal. Mach. Intell., 36(2):261-275.
[11]Jiang, Z.L., Lin, Z., Davis, L.S., 2011. Learning a discriminative dictionary for sparse coding via label consistent K-SVD. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, p.1697-1704.
[12]Lai, Z.H., Li, Y.J., Wan, M.H., et al., 2013. Local sparse representation projections for face recognition. Neur. Comput. Appl., 23(7):2231-2239.
[13]Liao, S.C., Jain, A.K., Li, S.Z., 2013. Partial face recognition: alignment-free approach. IEEE Trans. Patt. Anal. Mach. Intell., 35(5):1193-1205.
[14]Lu, J.W., Tan, Y.P., Wang, G., 2013. Discriminative multimanifold analysis for face recognition from a single training sample per person. IEEE Trans. Patt. Anal. Mach. Intell., 35(1):39-51.
[15]Martínez, A., Benavente, B., 1998. The AR Face Database. CVC Technical Report 24.
[16]Ortiz, E.G., Becker, B.C., 2014. Face recognition for web-scale datasets. Comput. Vis. Image Understand., 118:153-170.
[17]Patel, V.M., Wu, T., Biswas, S., et al., 2012. Dictionary-based face recognition under variable lighting and pose. IEEE Trans. Inform. Forens. Secur., 7(3):954-965.
[18]Phillips, P.J., Wechsler, H., Huang, J., et al., 1998. The FERET database and evaluation procedure for face-recognition algorithms. Image Vis. Comput., 16(5):295-306.
[19]Roweis, S.T., Saul, L.K., 2000. Nonlinear dimensionality reduction by locally linear embedding. Science, 290(5500):2323-2326.
[20]Sethian, J.A., 1999. Fast marching methods. SIAM Rev., 41(2):199-235.
[21]Seung, H.S., Lee, D.D., 2000. The manifold ways of perception. Science, 290(5500):2268-2269.
[22]Tenenbaum, J.B., de Silva, V., Langford, J.C., 2000. A global geometric framework for nonlinear dimensionality reduction. Science, 290(5500):2319-2323.
[23]Tibshirani, R., 1996. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B, 58(1):267-288.
[24]Vandenberghe, L., Boyd, S., 1996. Semidefinite programming. SIAM Rev., 38(1):49-95.
[25]Wagner, A., Wright, J., Ganesh, A., et al., 2012. Toward a practical face recognition system: robust alignment and illumination by sparse representation. IEEE Trans. Patt. Anal. Mach. Intell., 34(2):372-386.
[26]Wang, L.F., Wu, H.Y., Pan, C.H., 2015. Manifold regularized local sparse representation for face recognition. IEEE Trans. Circ. Syst. Video Technol., 25(4):651-659.
[27]Wang, R.P., Shan, S.G., Chen, X.L., et al., 2008. Manifold-manifold distance with application to face recognition based on image set. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, p.1-8.
[28]Weinberger, K.Q., Saul, L.K., 2009. Distance metric learning for large margin nearest neighbor classification. J. Mach. Learn. Res., 10:207-244.
[29]Wright, J., Yang, A.Y., Ganesh, A., et al., 2009. Robust face recognition via sparse representation. IEEE Trans. Patt. Anal. Mach. Intell., 31(2):210-227.
[30]Xu, Y., Zuo, W.M., Fan, Z.Z., 2012. Supervised sparse representation method with a heuristic strategy and face recognition experiments. Neurocomputing, 79:125-131.
[31]Xu, Y., Zhu, Q., Fan, Z.Z., et al., 2013. Using the idea of the sparse representation to perform coarse-to-fine face recognition. Inform. Sci., 238:138-148.
[32]Yang, M., Zhang, L., 2010. Gabor feature based sparse representation for face recognition with gabor occlusion dictionary. Proc. 11th European Conf. on Computer Vision, p.448-461.
[33]Yang, M., Zhang, D., Yang, J., 2011. Robust sparse coding for face recognition. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, p.625-632.
[34]Yu, Z.P., Wu, Z.D., Zhang, J.W., 2013. An illumination robust algorithm for face recognition via SRC and Gradientfaces. Proc. 2nd Int. Conf. on Innovative Computing and Cloud Computing, p.36-40.
[35]Zhang, D., Yang, M., Feng, X.C., 2011. Sparse representation or collaborative representation: which helps face recognition? Proc. IEEE Int. Conf. on Computer Vision, p.471-478.
[36]Zhang, Q., Li, B.X., 2010. Discriminative K-SVD for dictionary learning in face recognition. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, p.2691-2698.
[37]Zhou, T.Y., Tao, D.C., Wu, X.D., 2011. Manifold elastic net: a unified framework for sparse dimension reduction. Data Min. Knowl. Discov., 22(3):340-371.
Open peer comments: Debate/Discuss/Question/Opinion
<1>