CLC number: TP274+.2
On-line Access: 2016-05-04
Received: 2015-08-17
Revision Accepted: 2016-02-16
Crosschecked: 2016-04-11
Cited: 2
Clicked: 6007
Xie Wang, Mei-qin Liu, Zhen Fan, Sen-lin Zhang. A novel approach of noise statistics estimate using H∞ filter in target tracking[J]. Frontiers of Information Technology & Electronic Engineering, 2016, 17(5): 449-457.
@article{title="A novel approach of noise statistics estimate using H∞ filter in target tracking",
author="Xie Wang, Mei-qin Liu, Zhen Fan, Sen-lin Zhang",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="17",
number="5",
pages="449-457",
year="2016",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1500262"
}
%0 Journal Article
%T A novel approach of noise statistics estimate using H∞ filter in target tracking
%A Xie Wang
%A Mei-qin Liu
%A Zhen Fan
%A Sen-lin Zhang
%J Frontiers of Information Technology & Electronic Engineering
%V 17
%N 5
%P 449-457
%@ 2095-9184
%D 2016
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1500262
TY - JOUR
T1 - A novel approach of noise statistics estimate using H∞ filter in target tracking
A1 - Xie Wang
A1 - Mei-qin Liu
A1 - Zhen Fan
A1 - Sen-lin Zhang
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 17
IS - 5
SP - 449
EP - 457
%@ 2095-9184
Y1 - 2016
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1500262
Abstract: Noise statistics are essential for estimation performance. In practical situations, however, a priori information of noise statistics is often imperfect. Previous work on noise statistics identification in linear systems still requires initial prior knowledge of the noise. A novel approach is presented in this paper to solve this paradox. First, we apply the H∞; filter to obtain the system state estimates without the common assumptions about the noise in conventional adaptive filters. Then by applying state estimates obtained from the H∞; filter, better estimates of the noise mean and covariance can be achieved, which can improve the performance of estimation. The proposed approach makes the best use of the system knowledge without a priori information with modest computation cost, which makes it possible to be applied online. Finally, numerical examples are presented to show the efficiency of this approach.
This paper deals with the noise statistics estimation problem in target tracking. By introducing the H∞ filter instead of other conventional filters, more accurate noise samples could be obtained, which would lead to more exact estimates of noise mean and covariance. Overall, this paper is interesting and of some significance.
[1]Alouani, A.T., Blair, W.D., 1993. Use of a kinematic constraint in tracking constant speed, maneuvering targets. IEEE Trans. Autom. Contr., 38(7):1107-1111.
[2]Alspach, D.L., Scharf, L.L., Abiri, A., 1974. A Bayesian solution to the problem of state estimation in an unknown noise environment. Int. J. Contr., 19(2):265-287.
[3]Assa, A., Janabi-Sharifi, F., 2014. A robust vision-based sensor fusion approach for real-time pose estimation. IEEE Trans. Cybern., 44(2):217-227.
[4]Banavar, R.N., 1992. A Game Theoretic Approach to Linear Dynamic Estimation. PhD Thesis, Texas University, Austin, USA.
[5]Bavdekar, V.A., Deshpande, A.P., Patwardhan, S.C., 2011. Identification of process and measurement noise covariance for state and parameter estimation using extended Kalman filter. J. Process Contr., 21(4):585-601.
[6]Bélanger, P.R., 1974. Estimation of noise covariance matrices for a linear time-varying stochastic process. Automatica, 10(3):267-275.
[7]Bohlin, T., 1976. Four cases of identification of changing systems. Math. Sci. Eng., 126:441-518.
[8]Carew, B., Belanger, P., 1973. Identification of optimum filter steady-state gain for systems with unknown noise covariances. IEEE Trans. Autom. Contr., 18(6):582-587.
[9]Duník, J., Straka, O., Šimandl, M., 2015. Estimation of noise covariance matrices for linear systems with nonlinear measurements. Proc. 17th Symp. on System Identification, p.1130-1135.
[10]Feng, B., Fu, M., Ma, H., et al., 2014. Kalman filter with recursive covariance estimation—sequentially estimating process noise covariance. IEEE Trans. Ind. Electron., 61(11):6253-6263.
[11]Fu, X., Jia, Y., Du, J., et al., 2013. H∞ filtering with diagonal interacting multiple model algorithm for maneuvering target tracking. Proc. American Control Conf., p.6187-6192.
[12]Gales, M.J.F., 2009. Acoustic modelling for speech recognition: hidden Markov models and beyond? Proc. IEEE Workshop on Automatic Speech Recognition & Understanding, p.44.
[13]Jiang, T.Y., Liu, M.Q., Wang, X., et al., 2014. An efficient measurement-driven sequential Monte Carlo multi-Bernoulli filter for multi-target filtering. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 15(6):445-457.
[14]Jwo, D.J., Huang, C.M., 2007. An adaptive fuzzy strong tracking Kalman filter for GPS/INS navigation. Proc. 33rd Annual Conf. of the IEEE Industrial Electronics Society, p.2266-2271.
[15]Li, W., Jia, Y., 2010. Distributed interacting multiple model H∞ filtering fusion for multiplatform maneuvering target tracking in clutter. Signal Process., 90(5):1655-1668.
[16]Li, X.R., Bar-Shalom, Y., 1994. A recursive multiple model approach to noise identification. IEEE Trans. Aerosp. Electron. Syst., 30(3):671-684.
[17]Li, X.R., Jilkov, V.P., 2005. Survey of maneuvering target tracking. Part V: multiple-model methods. IEEE Trans. Aerosp. Electron. Syst., 41(4):1255-1321.
[18]Mazor, E., Averbuch, A., Bar-Shalom, Y., et al., 1998. Interacting multiple model methods in target tracking: a survey. IEEE Trans. Aerosp. Electron. Syst., 34(1):103-123.
[19]Mehra, R., 1972. Approaches to adaptive filtering. IEEE Trans. Autom. Contr., 17(5):693-698.
[20]Myers, K., Tapley, B., 1976. Adaptive sequential estimation with unknown noise statistics. IEEE Trans. Autom. Contr., 21(4):520-523.
[21]Odelson, B.J., Rajamani, M.R., Rawlings, J.B., 2006. A new autocovariance least-squares method for estimating noise covariances. Automatica, 42(2):303-308.
[22]Rabiner, L.R., 1990. A tutorial on hidden Markov models and selected applications in speech recognition. In: Waibel, A., Lee, K.F. (Eds.), Readings in Speech Recognition. Morgan Kaufmann Publishers Inc., USA, p.267-296.
[23]Rawicz, P.L., 2000. H∞/H2/Kalman Filtering of Linear Dynamical Systems via Variational Techniques with Applications to Target Tracking}. PhD Thesis, Drexel University, Philadelphia, USA.
[24]Shen, X., Deng, L., 1997. Game theory approach to discrete H∞ filter design. IEEE Trans. Signal Process., 45(4):1092-1095.
[25]Simon, D., 2006. Optimal State Estimation: Kalman, H∞, and Nonlinear Approaches. Wiley, New York, USA.
[26]Yadav, A., Naik, N., Ananthasayanam, M.R., et al., 2012. A constant gain Kalman filter approach to target tracking in wireless sensor networks. Proc. 7th IEEE Int. Conf. on Industrial and Information Systems, p.1-7.
[27]Yaesh, I., Shaked, U., 1991. A transfer function approach to the problems of discrete-time systems: H∞-optimal linear control and filtering. IEEE Trans. Autom. Contr., 36(11):1264-1271.
Open peer comments: Debate/Discuss/Question/Opinion
<1>