Full Text:   <2497>

Summary:  <1892>

CLC number: TP391.4

On-line Access: 2016-08-31

Received: 2015-10-20

Revision Accepted: 2016-04-10

Crosschecked: 2016-08-08

Cited: 1

Clicked: 7306

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Xiao-gang Jin

http://orcid.org/0000-0002-7787-7228

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2016 Vol.17 No.9 P.897-906

http://doi.org/10.1631/FITEE.1500346


Two-level hierarchical feature learning for image classification


Author(s):  Guang-hui Song, Xiao-gang Jin, Gen-lang Chen, Yan Nie

Affiliation(s):  College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China; more

Corresponding email(s):   xiaogangj@cise.zju.edu.cn

Key Words:  Transfer learning, Feature learning, Deep convolutional neural network, Hierarchical classification, Spectral clustering


Guang-hui Song, Xiao-gang Jin, Gen-lang Chen, Yan Nie. Two-level hierarchical feature learning for image classification[J]. Frontiers of Information Technology & Electronic Engineering, 2016, 17(9): 897-906.

@article{title="Two-level hierarchical feature learning for image classification",
author="Guang-hui Song, Xiao-gang Jin, Gen-lang Chen, Yan Nie",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="17",
number="9",
pages="897-906",
year="2016",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1500346"
}

%0 Journal Article
%T Two-level hierarchical feature learning for image classification
%A Guang-hui Song
%A Xiao-gang Jin
%A Gen-lang Chen
%A Yan Nie
%J Frontiers of Information Technology & Electronic Engineering
%V 17
%N 9
%P 897-906
%@ 2095-9184
%D 2016
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1500346

TY - JOUR
T1 - Two-level hierarchical feature learning for image classification
A1 - Guang-hui Song
A1 - Xiao-gang Jin
A1 - Gen-lang Chen
A1 - Yan Nie
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 17
IS - 9
SP - 897
EP - 906
%@ 2095-9184
Y1 - 2016
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1500346


Abstract: 
In some image classification tasks, similarities among different categories are different and the samples are usually misclassified as highly similar categories. To distinguish highly similar categories, more specific features are required so that the classifier can improve the classification performance. In this paper, we propose a novel two-level hierarchical feature learning framework based on the deep convolutional neural network (CNN), which is simple and effective. First, the deep feature extractors of different levels are trained using the transfer learning method that fine-tunes the pre-trained deep CNN model toward the new target dataset. Second, the general feature extracted from all the categories and the specific feature extracted from highly similar categories are fused into a feature vector. Then the final feature representation is fed into a linear classifier. Finally, experiments using the Caltech-256, Oxford Flower-102, and Tasmania Coral Point Count (CPC) datasets demonstrate that the expression ability of the deep features resulting from two-level hierarchical feature learning is powerful. Our proposed method effectively increases the classification accuracy in comparison with flat multiple classification methods.

基于两级层次特征学习的图像分类方法

概要:在图像分类任务中,不同类别之间的相似度是不同的,样本经常被误分到相似度较高的类别中。为了区分高度相似类别中的样本,需要更加具体的图像特征,以便于分类器能够提高分类性能。本文提出了一种新颖、有效的基于深度卷积神经网络的两级层次特征学习框架。首先,不同层次的深度特征抽取器使用迁移学习方法进行训练。然后,从全部类别中抽取的通用特征和从高度相似类别中抽取的具体特征被融合成一个特征向量,并将其输入线性分类器进行分类。最后,基于Caltech-256、Oxford Flower-102和Tasmania Coral Point Count三个图像数据集的实验证明,通过两级层次特征学习的深度特征的表达能力十分强大,与传统的扁平多分类方法相比,我们提出的方法能有效地提高分类精度。
关键词:迁移学习;特征学习;深度卷积神经网络;层次分类;谱聚类

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Angelova, A., Zhu, S., Lin, Y., 2013. Image segmentation for large-scale subcategory flower recognition. Proc. IEEE Workshop on Applications of Computer Vision, p.39-45.

[2]Barrett, N., Meyer, L., Hill, N., et al., 2011. Methods for the Processing and Scoring of AUV Digital Imagery from South Eastern Tasmania. Technical Report. University of Tasmania, Hobart.

[3]Bewley, M.S., Douillard, B., Nourani-Vatani, N., et al., 2012. Automated species detection: an experimental approach to kelp detection from sea-floor AUV images. Proc. Australasian Conf. on Robotics and Automation, p.1-10.

[4]Bewley, M.S., Nourani-Vatani, N., Rao, D., et al., 2015. Hierarchical classification in AUV imagery. Proc. 9th Int. Conf. on Field and Service Robotics, p.3-16.

[5]Cai, Y., Yang, M.L., Li, J., 2015. Multiclass classification based on a deep convolutional network for head pose estimation. Front. Inform. Technol. Electron. Eng., 16(11):930-939.

[6]Deng, J., Satheesh, S., Berg, A.C., et al., 2011. Fast and balanced: efficient label tree learning for large scale object recognition. Advances in Neural Information Processing Systems 24, p.567-575.

[7]Deng, J., Ding, N., Jia, Y.Q., et al., 2014. Large-scale object classification using label relation graphs. Proc. 13th European Conf. on Computer Vision, p.48-64.

[8]Donahue, J., Jia, Y., Vinyals, O., et al., 2014. DeCAF: a deep convolutional activation feature for generic visual recognition. Proc. 31st Int. Conf. on Machine Learning, p.1-9.

[9]Fergus, R., Bernal, H., Weiss, Y., et al., 2010. Semantic label sharing for learning with many categories. Proc. 11th European Conf. on Computer Vision, p.762-775.

[10]Ge, Z.Y., McCool, C., Sanderson, C., et al., 2015. Subset feature learning for fine-grained category classification. Proc. IEEE Conf. on Computer Vision and Pattern Recognition Workshops, p.46-52.

[11]Girshick, R., Donahue, J., Darrell, T., et al., 2014. Rich feature hierarchies for accurate object detection and semantic segmentation. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, p.580-587.

[12]Griffin, G., Perona, P., 2008. Learning and using taxonomies for fast visual categorization. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, p.1-8.

[13]Krizhevsky, A., Sutskever, I., Hinton, G.E., 2012. ImageNet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems 25, p.1097-1105.

[14]Liu, B.Y., Sadeghi, F., Tappen, M., et al., 2013. Probabilistic label trees for efficient large scale image classification. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, p.843-850.

[15]Nilsback, M.E., 2009. An Automatic Visual Flora—Segmentation and Classification of Flower Images. PhD Thesis, University of Oxford, UK.

[16]Nilsback, M.E., Zisserman, A., 2008. Automated flower classification over a large number of classes. Proc. 6th Indian Conf. on Computer Vision, p.722-729.

[17]Razavian, A.S., Azizpour, H., Sullivan, J., et al., 2014. CNN features off-the-shelf: an astounding baseline for recognition. Proc. IEEE Conf. on Computer Vision and Pattern Recognition Workshops, p.512-519.

[18]Srivastava, N., Salakhutdinov, R.R., 2013. Discriminative transfer learning with tree-based priors. Advances in Neural Information Processing Systems 26, p.2094-2102.

[19]Tousch, A.M., Herbin, S., Audibert, J.Y., 2012. Semantic hierarchies for image annotation: a survey. Patt. Recogn., 45(1):333-345.

[20]Yan, Z.C., Zhang, H., Piramuthu, R., et al., 2015. HD-CNN: hierarchical deep convolutional neural networks for large scale visual recognition. Proc. Int. Conf. on Computer Vision, p.2740-2748.

[21]Yosinski, J., Clune, J., Bengio, Y., et al., 2014. How transferable are features in deep neural networks? Advances in Neural Information Processing Systems 27, p.3320-3328.

[22]Zeiler, M.D., Fergus, R., 2014. Visualizing and understanding convolutional networks. Proc. 13th European Conf. on Computer Vision, p.818-833.

[23]Zhao, B., Li, F., Xing, E.P., 2011. Large-scale category structure aware image categorization. Advances in Neural Information Processing Systems 24, p.1251-1259.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE