Full Text:   <1642>

CLC number: TP393

On-line Access: 2018-01-11

Received: 2016-05-13

Revision Accepted: 2016-06-26

Crosschecked: 2017-11-22

Cited: 0

Clicked: 4440

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Xi Li

http://orcid.org/0000-0003-3023-1662

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2017 Vol.18 No.11 P.1867-1873

http://doi.org/10.1631/FITEE.1601255


Joint entity–relation knowledge embedding via cost-sensitive learning


Author(s):  Sheng-kang Yu, Xue-yi Zhao, Xi Li, Zhong-fei Zhang

Affiliation(s):  College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China; more

Corresponding email(s):   shengkangyu@zju.edu.cn, xueyizhao@zju.edu.cn, xilizju@zju.edu.cn, zhongfei@zju.edu.cn

Key Words:  Knowledge embedding, Joint embedding, Cost-sensitive learning


Sheng-kang Yu, Xue-yi Zhao, Xi Li, Zhong-fei Zhang. Joint entity–relation knowledge embedding via cost-sensitive learning[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(11): 1867-1873.

@article{title="Joint entity–relation knowledge embedding via cost-sensitive learning",
author="Sheng-kang Yu, Xue-yi Zhao, Xi Li, Zhong-fei Zhang",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="18",
number="11",
pages="1867-1873",
year="2017",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1601255"
}

%0 Journal Article
%T Joint entity–relation knowledge embedding via cost-sensitive learning
%A Sheng-kang Yu
%A Xue-yi Zhao
%A Xi Li
%A Zhong-fei Zhang
%J Frontiers of Information Technology & Electronic Engineering
%V 18
%N 11
%P 1867-1873
%@ 2095-9184
%D 2017
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1601255

TY - JOUR
T1 - Joint entity–relation knowledge embedding via cost-sensitive learning
A1 - Sheng-kang Yu
A1 - Xue-yi Zhao
A1 - Xi Li
A1 - Zhong-fei Zhang
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 18
IS - 11
SP - 1867
EP - 1873
%@ 2095-9184
Y1 - 2017
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1601255


Abstract: 
As a joint-optimization problem which simultaneously fulfills two different but correlated embedding tasks (i.e., entity embedding and relation embedding), knowledge embedding problem is solved in a joint embedding scheme. In this embedding scheme, we design a joint compatibility scoring function to quantitatively evaluate the relational facts with respect to entities and relations, and further incorporate the scoring function into the max-margin structure learning process that explicitly learns the embedding vectors of entities and relations using the context information of the knowledge base. By optimizing the joint problem, our design is capable of effectively capturing the intrinsic topological structures in the learned embedding spaces. Experimental results demonstrate the effectiveness of our embedding scheme in characterizing the semantic correlations among different relation units, and in relation prediction for knowledge inference.

基于代价敏感学习的实体–关系联合知识嵌入

概要:我们将实体嵌入问题看作同时完成两个不同但相关的嵌入任务(实体嵌入和关系嵌入)的联合优化问题,并在联合嵌入框架下求解该问题。在该嵌入框架下,我们设计了联合评分函数,用以对实体和关系间的相关性实例进行量化评价,并将评分函数融入最大间隔学习方法中,使用知识库中的上下文信息学习实体与关系的嵌入向量。通过求解联合优化问题,我们的设计有效地表达了嵌入空间的固有拓扑结构。实验结果证实了我们的嵌入框架在表达不同关系的语义相关性和进行知识推理中的关系预测时的有效性。

关键词:知识嵌入;联合嵌入;代价敏感学习

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Bollacker, K., Evans, C., Paritosh, P., et al., 2008. Freebase: a collaboratively created graph database for structuring human knowledge. Proc. Int. Conf. on ACM SIGMOD Management of Data, p.1247-1250.

[2]Bordes, A., Weston, J., Collobert, R., et al., 2011. Learning structured embeddings of knowledge bases. Proc. Comput. Sci., 108:345-354.

[3]Bordes, A., Usunier, N., Garcia-Duran, A., et al., 2013. Translating embeddings for modeling multi-relational data. NIPS, p.2787-2795.

[4]Bordes, A., Glorot, X., Weston, J., et al., 2014. A semantic matching energy function for learning with multi-relational data. Mach. Learn., 94(2):233-259.

[5]Chang, K.W., Yih, W.T., Meek, C., 2013. Multi-relational latent semantic analysis. Proc. Conf. on Empirical Methods in Natural Language Processing, p.1602-1612.

[6]Duchi, J., Hazan, E., Singer, Y., 2011. Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res., 12:2121-2159.

[7]Elisseeff, A., Weston, J., 2001. A kernel method for multi-labelled classification. NIPS, p.681-687.

[8]García-Durán, A., Bordes, A., Usunier, N., 2015. Composing Relationships with Translations. Technical Report linebreak No. hal-01167811, CNRS-Heudiasyc, Compiègne.

[9]Getoor, L., Mihalkova, L., 2011. Learning statistical models from relational data. Proc. Int. Conf. on ACM SIGMOD Management of Data, p.1195-1198.

[10]Hoffmann, R., Zhang, C., Ling, X., et al., 2011. Knowledge-based weak supervision for information extraction of overlapping relations. Proc. 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, p.541-550.

[11]Jenatton, R., Roux, N.L., Bordes, A., et al., 2012. A latent factor model for highly multi-relational data. NIPS, p.3167-3175.

[12]Lin, Y.K., Liu, Z.Y., Luan, H.B., et al., 2015. Modeling relation paths for representation learning of knowledge bases. arXiv: 1506.00379. http://arxiv.org/abs/1506.00379

[13]Maaten, L.V.D., Hinton, G., 2008. Visualizing data using t-SNE. J. Mach. Learn. Res., 9:2579-2605.

[14]Miller, G.A., 1995. WordNet: a lexical database for English. Commun. ACM, 38(11):39-41.

[15]Nickel, M., Tresp, V., Kriegel, H.P., 2011. A three-way model for collective learning on multi-relational data. Proc. 28th Int. Conf. on Machine Learning, p.809-816.

[16]Singhal, A., 2012. Introducing the Knowledge Graph: Things, not Strings. Google. https://21stcenturylibrary.com/2012/05/21/introducing-googles-knowledge-graph-things-not-strings [Accessed on May 21, 2012].

[17]Socher, R., Chen, D., Manning, C.D., et al., 2013. Reasoning with neural tensor networks for knowledge base completion. NIPS, p.926-934.

[18]Wang, Z., Zhang, J.W., Feng, J.L., et al., 2014. Knowledge graph embedding by translating on hyperplanes. Proc. 28th Conf. on Artificial Intelligence, p.1112-1119.

[19]Waters, R., 2012. Google to unveil search results overhaul. Financial Times, May.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2022 Journal of Zhejiang University-SCIENCE