CLC number: TN911.5
On-line Access: 2018-02-06
Received: 2016-10-14
Revision Accepted: 2017-05-22
Crosschecked: 2017-12-20
Cited: 0
Clicked: 8433
Ruo-yu Zhang, Hong-lin Zhao, Shao-bo Jia. Compressed sensing-based structured joint channel estimation in a multi-user massive MIMO system[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(12): 2082-2100.
@article{title="Compressed sensing-based structured joint channel estimation in a multi-user massive MIMO system",
author="Ruo-yu Zhang, Hong-lin Zhao, Shao-bo Jia",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="18",
number="12",
pages="2082-2100",
year="2017",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1601635"
}
%0 Journal Article
%T Compressed sensing-based structured joint channel estimation in a multi-user massive MIMO system
%A Ruo-yu Zhang
%A Hong-lin Zhao
%A Shao-bo Jia
%J Frontiers of Information Technology & Electronic Engineering
%V 18
%N 12
%P 2082-2100
%@ 2095-9184
%D 2017
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1601635
TY - JOUR
T1 - Compressed sensing-based structured joint channel estimation in a multi-user massive MIMO system
A1 - Ruo-yu Zhang
A1 - Hong-lin Zhao
A1 - Shao-bo Jia
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 18
IS - 12
SP - 2082
EP - 2100
%@ 2095-9184
Y1 - 2017
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1601635
Abstract: Acquisition of accurate channel state information (CSI) at transmitters results in a huge pilot overhead in massive multiple input multiple output (MIMO) systems due to the large number of antennas in the base station (BS). To reduce the overwhelming pilot overhead in such systems, a structured joint channel estimation scheme employing compressed sensing (CS) theory is proposed. Specifically, the channel sparsity in the angular domain due to the practical scattering environment is analyzed, where common sparsity and individual sparsity structures among geographically neighboring users exist in multi-user massive MIMO systems. Then, by equipping each user with multiple antennas, the pilot overhead can be alleviated in the framework of CS and the channel estimation quality can be improved. Moreover, a structured joint matching pursuit (SJMP) algorithm at the BS is proposed to jointly estimate the channel of users with reduced pilot overhead. Furthermore, the probability upper bound of common support recovery and the upper bound of channel estimation quality using the proposed SJMP algorithm are derived. Simulation results demonstrate that the proposed SJMP algorithm can achieve a higher system performance than those of existing algorithms in terms of pilot overhead and achievable rate.
[1]Barbotin, Y., Hormati, A., Rangan, S., et al., 2012. Estimation of sparse MIMO channels with common support. IEEE Trans. Commun., 60(12):3705-3716.
[2]Baum, D.S., Hansen, J., Salo, J., 2005. An interim channel model for beyond-3G systems: extending the 3GPP spatial channel model (SCM). IEEE 61st Vehicular Technology Conf., p.3132-3136.
[3]Berger, C.R., Wang, Z.H., Huang, J.Z., et al., 2010. Application of compressive sensing to sparse channel estimation. IEEE Commun. Mag., 48(11):164-174.
[4]Björnson, E., Larsson, E.G., Marzetta, T.L., 2015. Massive MIMO: ten myths and one critical question. IEEE Commun. Mag., 54(2):114-123.
[5]Bogale, T.E., Vandendorpe, L., Chalise, B.K., 2012. Robust transceiver optimization for downlink coordinated base station systems: distributed algorithm. IEEE Trans. Signal Process., 60(1):337-350.
[6]Chen, Y., Qin, Z., 2015. Gradient-based compressive image fusion. Front. Inform. Technol. Electron. Eng., 16(3):227-237.
[7]Choi, J., Love, D.J., Bidigare, P., 2014. Downlink training techniques for FDD massive MIMO systems: open-loop and closed-loop training with memory. IEEE J. Sel. Top. Signal Process., 8(5):802-814.
[8]Dai, L.L., Wang, J.T., Wang, Z.C., et al., 2013. Spectrum-and energy-efficient OFDM based on simultaneous multi-channel reconstruction. IEEE Trans. Signal Process., 61(23):6047-6059.
[9]Dai, W., Milenkovic, O., 2009. Subspace pursuit for compressive sensing signal reconstruction. IEEE Trans. Inform. Theory, 55(5):2230-2249.
[10]Dasgupta, S., Gupta, A., 2003. An elementary proof of a theorem of Johnson and Lindenstrauss. Rand. Struct. Algor., 22(1):60-65.
[11]Donoho, D.L., 2006. Compressed sensing. IEEE Trans. Inform. Theory, 52(4):1289-1306.
[12]Eldar, Y.C., Kuppinger, P., Bölcskei, H., 2010. Block-sparse signals: uncertainty relations and efficient recovery. IEEE Trans. Signal Process., 58(6):3042-3054.
[13]Gao, X., Edfors, O., Rusek, F., et al., 2011. Linear pre-coding performance in measured very-large MIMO channels. IEEE Vehicular Technology Conf., p.1-5.
[14]Gao, Z., Dai, L.L., Wang, Z., 2014. Structured compressive sensing based superimposed pilot design in downlink large-scale MIMO systems. Electron. Lett., 50(12):896-898.
[15]Gao, Z., Dai, L.L., Wang, Z., et al., 2015. Spatially common sparsity based adaptive channel estimation and feedback for FDD massive MIMO. IEEE Trans. Signal Process., 63(23):6169-6183.
[16]Gao, Z., Dai, L.L., Dai, W., et al., 2016. Structured compressive sensing-based spatio-temporal joint channel estimation for FDD massive MIMO. IEEE Trans. Commun., 64(2):601-617.
[17]Hoydis, J., Hoek, C., Wild, T., et al., 2012. Channel measurements for large antenna arrays. IEEE Int. Symp. on Wireless Communication Systems, p.811-815.
[18]Hoydis, J., Ten Brink, S., Debbah, M., 2013. Massive MIMO in the UL/DL of cellular networks: how many antennas do we need IEEE J. Sel. Areas Commun., 31(2):160-171.
[19]Hu, D., Wang, X.D., He, L.H., 2013. A new sparse channel estimation and tracking method for time-varying OFDM systems. IEEE Trans. Veh. Technol., 62(9):4648-4653.
[20]Ketonen, J., Juntti, M., Cavallaro, J.R., 2010. Performance-complexity comparison of receivers for a LTE MIMO-OFDM system. IEEE Trans. Signal Process., 58(6): 3360-3372.
[21]Lee, B., Choi, J., Seol, J.Y., et al., 2015. Antenna grouping based feedback compression for FDD-based massive MIMO systems. IEEE Trans. Commun., 63(9):3261-3274.
[22]Lu, L., Li, G.Y., Swindlehurst, A.L., et al., 2014. An overview of massive MIMO: benefits and challenges. IEEE J. Sel. Top. Signal Process., 8(5):742-758.
[23]Noh, S., Zoltowski, M.D., Sung, Y., et al., 2014. Pilot beam pattern design for channel estimation in massive MIMO systems. IEEE J. Sel. Top. Signal Process., 8(5):787-801.
[24]Qi, C.H., Wu, L.N., 2014. Uplink channel estimation for massive MIMO systems exploring joint channel sparsity. Electron. Lett., 50(23):1770-1772.
[25]Rao, X.B., Lau, V.K.N., 2014. Distributed compressive CSIT estimation and feedback for FDD multi-user massive MIMO systems. IEEE Trans. Signal Process., 62(12): 3261-3271.
[26]Tropp, J.A., Gilbert, A.C., 2007. Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inform. Theory, 53(12):4655-4666.
[27]Tropp, J.A., Gilbert, A.C., Strauss, M.J., 2006. Algorithms for simultaneous sparse approximation. Part I: greedy pursuit. Signal Process., 86(3):572-588.
[28]Tse, D., Viswanath, P., 2005. Fundamentals of Wireless Communication. Cambridge University Press, New York, p.309-330.
[29]Yin, H.F., Gesbert, D., Filippou, M., et al., 2012. A coordinated approach to channel estimation in large-scale multiple-antenna systems. IEEE J. Sel. Areas Commun., 31(2): 264-273.
[30]Zhang, Z.Y., Teh, K.C., Li, K.H., 2014. Application of compressive sensing to limited feedback strategy in large-scale multiple-input single-output cellular networks. IET Commun., 8(6):947-955.
Open peer comments: Debate/Discuss/Question/Opinion
<1>