Full Text:   <1853>

Summary:  <1552>

CLC number: O175

On-line Access: 2019-11-11

Received: 2019-05-01

Revision Accepted: 2019-07-12

Crosschecked: 2019-10-08

Cited: 0

Clicked: 5275

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Muhammad Asif Zahoor Raja

http://orcid.org/0000-0001-9953-822X

Muhammad Saeed Aslam

http://orcid.org/0000-0001-6219-4910

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2019 Vol.20 No.10 P.1445-1456

http://doi.org/10.1631/FITEE.1900221


Differential evolution based computation intelligence solver for elliptic partial differential equations


Author(s):  Muhammad Faisal Fateh, Aneela Zameer, Sikander M. Mirza, Nasir M. Mirza, Muhammad Saeed Aslam, Muhammad Asif Zahoor Raja

Affiliation(s):  Department of Electrical Engineering, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 45650, Pakistan; more

Corresponding email(s):   muhammad.aslam@adelaide.edu.au

Key Words:  Differential evolution, Boundary value problems, Partial differential equation, Finite difference scheme, Numerical computing


Share this article to: More <<< Previous Article|

Muhammad Faisal Fateh, Aneela Zameer, Sikander M. Mirza, Nasir M. Mirza, Muhammad Saeed Aslam, Muhammad Asif Zahoor Raja. Differential evolution based computation intelligence solver for elliptic partial differential equations[J]. Frontiers of Information Technology & Electronic Engineering, 2019, 20(10): 1445-1456.

@article{title="Differential evolution based computation intelligence solver for elliptic partial differential equations",
author="Muhammad Faisal Fateh, Aneela Zameer, Sikander M. Mirza, Nasir M. Mirza, Muhammad Saeed Aslam, Muhammad Asif Zahoor Raja",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="20",
number="10",
pages="1445-1456",
year="2019",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1900221"
}

%0 Journal Article
%T Differential evolution based computation intelligence solver for elliptic partial differential equations
%A Muhammad Faisal Fateh
%A Aneela Zameer
%A Sikander M. Mirza
%A Nasir M. Mirza
%A Muhammad Saeed Aslam
%A Muhammad Asif Zahoor Raja
%J Frontiers of Information Technology & Electronic Engineering
%V 20
%N 10
%P 1445-1456
%@ 2095-9184
%D 2019
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1900221

TY - JOUR
T1 - Differential evolution based computation intelligence solver for elliptic partial differential equations
A1 - Muhammad Faisal Fateh
A1 - Aneela Zameer
A1 - Sikander M. Mirza
A1 - Nasir M. Mirza
A1 - Muhammad Saeed Aslam
A1 - Muhammad Asif Zahoor Raja
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 20
IS - 10
SP - 1445
EP - 1456
%@ 2095-9184
Y1 - 2019
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1900221


Abstract: 
A differential evolution based methodology is introduced for the solution of elliptic partial differential equations (PDEs) with Dirichlet and/or Neumann boundary conditions. The solutions evolve over bounded domains throughout the interior nodes by minimization of nodal deviations among the population. The elliptic PDEs are replaced by the corresponding system of finite difference approximation, yielding an expression for nodal residues. The global residue is declared as the root-mean-square value of the nodal residues and taken as the cost function. The standard differential evolution is then used for the solution of elliptic PDEs by conversion to a minimization problem of the global residue. A set of benchmark problems consisting of both linear and nonlinear elliptic PDEs has been considered for validation, proving the effectiveness of the proposed algorithm. To demonstrate its robustness, sensitivity analysis has been carried out for various differential evolution operators and parameters. Comparison of the differential evolution based computed nodal values with the corresponding data obtained using the exact analytical expressions shows the accuracy and convergence of the proposed methodology.

基于差分进化的椭圆型偏微分方程计算智能求解器

摘要:介绍了一种基于差分进化的方法,用以解决具有狄里克莱和/或诺依曼边界条件的椭圆型偏微分方程。通过最小化群体间的节点偏差,解决方案在整个内部节点的有界域上演化。用对应系统的有限差分近似代替椭圆型偏微分方程,得到节点留数的表达式。将全局留数声明为节点留数的均方根值,并将其作为代价函数。利用标准微分进化方法将椭圆型偏微分方程转化为全局留数的极小化问题求解。同时考虑线性与非线性椭圆偏微分方程的一系列基准问题,验证了该算法的有效性。为证明该算法的鲁棒性,对不同差分进化算子和参数进行灵敏度分析。将基于差分进化的计算节点值与用精确解析表达式得到的对应数据进行比较,比较结果显示了该方法的精确度和收敛性。

关键词:差分进化;边界值问题;偏微分方程;有限差分法;数值计算

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Ahmad I, Raja MAZ, Bilal M, et al., 2016. Bio-inspired computational heuristics to study Lane-Emden systems arising in astrophysics model. SpringerPlus, 5, Article 1866.

[2]Ahmad I, Raja MAZ, Bilal M, et al., 2017. Neural network methods to solve the Lane-Emden type equations arising in thermodynamic studies of the spherical gas cloud model. Neur Comput Appl, 28(S1):929-944.

[3]Bramble JH, Hubbard BE, Thomée V, 1969. Convergence estimates for essentially positive type discrete Dirichlet problems. Math Comput, 23(108):695-709.

[4]Carlson HA, Verberg R, Harris CA, 2017. Aeroservoelastic modeling with proper orthogonal decomposition. Phys Fluids, 29(2):020711.

[5]Carotenuto A, Ciccolella M, Massarotti N, et al., 2016. Models for thermo-fluid dynamic phenomena in low enthalpy geothermal energy systems: a review. Renew Sustain Energy Rev, 60:330-355.

[6]Chang HH, Tsai CY, 2014. Adaptive registration of magnetic resonance images based on a viscous fluid model. Comput Methods Progr Biomed, 117(2):80-91.

[7]Courant R, Friedrichs K, Lewy H, 1928. Über die partiellen differenzengleichungen der mathematischen physik. Math Ann, 100(1):32-74 (in German).

[8]Dai CQ, Chen RP, Wang YY, et al., 2017a. Dynamics of light bullets in inhomogeneous cubic-quintic-septimal nonlinear media with PT-symmetric potentials. Nonl Dynam, 87(3):1675-1683.

[9]Dai CQ, Liu J, Fan Y, et al., 2017b. Two-dimensional localized Peregrine solution and breather excited in a variable-coefficient nonlinear Schrödinger equation with partial nonlocality. Nonl Dynam, 88(2):1373-1383.

[10]Das R, Singh K, Gogoi TK, 2017. Estimation of critical dimensions for a trapezoidal-shaped steel fin using hybrid diffierential evolution algorithm. Neur Comput Appl, 28(7):1683-1693.

[11]Ding DJ, Jin DQ, Dai CQ, 2017. Analytical solutions of differential-difference sine-Gordon equation. Therm Sci, 21(4):1701-1705.

[12]Fateh MF, Zameer A, Mirza NM, et al., 2017. Biologically inspired computing framework for solving two-point boundary value problems using differential evolution. Neur Comput Appl, 28(8):2165-2179.

[13]Gao LN, Zi YY, Yin YH, et al., 2017. Bäcklund transformation, multiple wave solutions and lump solutions to a (3+1)-dimensional nonlinear evolution equation. Nonl Dynam, 89(3):2233-2240.

[14]Gerschgorin VS, 1930. Fehlerabschätzung für das differenzenverfahren zur Lösung partieller differentialgleichungen. J Appl Math Mech, 10(4):373-382 (in German).}

[15]Gilbarg D, Trudinger NS, 2015. Elliptic Partial Differential Equations of Second Order. Springer, Berlin, Germany.

[16]Guo W, Xu T, Lu ZL, 2016. An integrated chaotic time series prediction model based on efficient extreme learning machine and differential evolution. Neur Comput Appl, 27(4):883-898.

[17]Hua YF, Guo BL, Ma WX, et al., 2019. Interaction behavior associated with a generalized (2+1)-dimensional Hirota bilinear equation for nonlinear waves. Appl Math Model, 74:184-198.

[18]Li YY, Zhao Y, Xie GN, et al., 2014. Local fractional Poisson and Laplace equations with applications to electrostatics in fractal domain. Adv Math Phys, 2014:590574.

[19]Machado MR, Pereira VS, Costa DI, et al., 2016. Dynamics analysis of 1D structure including random parameter via frequency-domain state-vector equations. Proc 37th Iberian Latin-American Congress on Computational Mehods in Engineering, p.1-14.}

[20]Marichal Y, Chatelain P, Winckelmans G, 2014. An immersed interface solver for the 2-D unbounded Poisson equation and its application to potential flow. Comput Fluids, 96:76-86.

[21]Motzkin TS, Wasow W, 1952. On the approximation of linear elliptic differential equations by difference equations with positive coefficients. J Math Phys, 31(1-4):253-259.

[22]Oden JT, Lima EA, Almeida RC, et al., 2016. Toward predictive multiscale modeling of vascular tumor growth. Arch Comput Methods Eng, 23(4):735-779.

[23]Peaceman DW, Rachford HHJr, 1955. The numerical solution of parabolic and elliptic differential equations. J Soc Ind Appl Math, 3(1):28-41.

[24]Raja MAZ, Khan MAR, Mahmood T, et al., 2016a. Design of bio-inspired computing technique for nanofluidics based on nonlinear Jeffery-Hamel flow equations. Can J Phys, 94(5):474-489.

[25]Raja MAZ, Farooq U, Chaudhary NI, et al., 2016b. Stochastic numerical solver for nanofuidic problems containing multi-walled carbon nanotubes. Appl Soft Comput, 38:561-586.

[26]Raja MAZ, Shah FH, Alaidarous ES, et al., 2017a. Design of bio-inspired heuristic technique integrated with interior-point algorithm to analyze the dynamics of heartbeat model. Appl Soft Comput, 52:605-629.

[27]Raja MAZ, Ahmad I, Khan I, et al., 2017b. Neuro-heuristic computational intelligence for solving nonlinear pantograph systems. Front Inform Technol Electron Eng, 18(4):464-484.

[28]Raja MAZ, Aslam MS, Chaudhary NI, et al., 2018. Bio-inspired heuristics hybrid with interior-point method for active noise control systems without identification of secondary path. Front Inform Technol Electron Eng, 19(2):246-259.

[29]Selvadurai AP, 2000. Partial Differential Equations in Mechanics 2: the Biharmonic Equation, Poissona Equation. Springer Science & Business Media, Berlin, mbox{Germany.}

[30]Shao YL, Faltinsen OM, 2014. A harmonic polynomial cell (HPC) method for 3D Laplace equation with application in marine hydrodynamics. J Comput Phys, 274:312-332.

[31]Spiller C, Toro EF, Vázquez-Cendón ME, et al., 2017. On the exact solution of the Riemann problem for blood flow in human veins, including collapse. Appl Math Comput, 303:178-179.

[32]Storn R, Price K, 1997. Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim, 11(4):341-359.

[33]Taleei A, Dehghan M, 2014. Direct meshless local Petrov-Galerkin method for elliptic interface problems with applications in electrostatic and elastostatic. Comput Methods Appl Mech Eng, 278:479-498.

[34]Vétois J, 2016. A priori estimates and application to the symmetry of solutions for critical p-Laplace equations. J Differ Equat, 260(1):149-161.

[35]Wang YY, Zhang YP, Dai CQ, 2016. Re-study on localized structures based on variable separation solutions from the modified tanh-function method. Nonl Dynam, 83(3):1331-1339.

[36]Wang YY, Chen L, Dai CQ, et al., 2017. Exact vector multipole and vortex solitons in the media with spatially modulated cubica-quintic nonlinearity. Nonl Dynam, 90(2):1269-1275.

[37]Webster AG, 2016. Partial Differential Equations of Mathematical Physics. Courier Dover Publications, Inc., New York, USA.

[38]Yin YH, Ma WX, Liu JG, et al., 2018. Diversity of exact solutions to a (3+1)-dimensional nonlinear evolution equation and its reduction. Comput Math Appl, 76(6):1275-1283.

[39]Zhang B, Zhang XL, Dai CQ, 2017. Discussions on localized structures based on equivalent solution with different forms of breaking soliton model. Nonl Dynam, 87(4):2385-2393.

[40]Zhao LG, Liu HD, Zhao FK, 2013. Existence and concentration of solutions for the Schrödinger-Poisson equations with steep well potential. J Differ Equat, 255(1):1-23.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE