CLC number: O233
On-line Access: 2020-03-04
Received: 2019-08-26
Revision Accepted: 2019-10-09
Crosschecked: 2019-12-13
Cited: 0
Clicked: 5157
Citations: Bibtex RefMan EndNote GB/T7714
Jie Liu, Lulu Li, Habib M. Fardoun. Complete synchronization of coupled Boolean networks with arbitrary finite delays[J]. Frontiers of Information Technology & Electronic Engineering, 2020, 21(2): 281-293.
@article{title="Complete synchronization of coupled Boolean networks with arbitrary finite delays",
author="Jie Liu, Lulu Li, Habib M. Fardoun",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="21",
number="2",
pages="281-293",
year="2020",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1900438"
}
%0 Journal Article
%T Complete synchronization of coupled Boolean networks with arbitrary finite delays
%A Jie Liu
%A Lulu Li
%A Habib M. Fardoun
%J Frontiers of Information Technology & Electronic Engineering
%V 21
%N 2
%P 281-293
%@ 2095-9184
%D 2020
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1900438
TY - JOUR
T1 - Complete synchronization of coupled Boolean networks with arbitrary finite delays
A1 - Jie Liu
A1 - Lulu Li
A1 - Habib M. Fardoun
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 21
IS - 2
SP - 281
EP - 293
%@ 2095-9184
Y1 - 2020
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1900438
Abstract: In this study, the complete synchronization problem of coupled delayed boolean networks (CDBNs) is investigated. The state delays and output delays may not be equal, and the state delay in each Boolean network may be different in the proposed CDBN model. Based on the semi-tensor product of matrices, a necessary and sufficient condition for the complete synchronization of CDBNs is obtained. Then, an efficient algorithm for solving the synchronization of CDBNs is provided. Finally, numerical examples are presented to demonstrate the effectiveness of our algorithm.
[1]Cheng DZ, Qi HS, 2010. A linear representation of dynamics of Boolean networks. IEEE Trans Autom Contr, 55(10):2251-2258.
[2]Cheng DZ, Qi HS, Li ZQ, 2011. Analysis and Control of Boolean Networks: a Semi-tensor Product Approach. Springer-Verlag, London.
[3]Fornasini E, Valcher ME, 2015. Fault detection analysis of Boolean control networks. IEEE Trans Autom Contr, 60(10):2734-2739.
[4]Guo YQ, Wang P, Gui WH, et al., 2015. Set stability and set stabilization of Boolean control networks based on invariant subsets. Automatica, 61:106-112.
[5]Heidel J, Maloney J, Farrow C, et al., 2003. Finding cycles in synchronous Boolean networks with applications to biochemical systems. Int J Bifurc Chaos, 13(3):535-552.
[6]Huang C, Lu JQ, Ho DWC, et al., 2020. Stabilization of probabilistic Boolean networks via pinning control strategy. Inform Sci, 510:205-217.
[7]Kauffman SA, 1969. Metabolic stability and epigenesis in randomly constructed genetic nets. J Theor Biol, 22(3):437-467.
[8]Kobayashi K, Hiraishi K, 2017. Design of probabilistic Boolean networks based on network structure and steady-state probabilities. IEEE Trans Neur Netw Learn Syst, 28(8):1966-1971.
[9]Laschov D, Margaliot M, Even G, 2013. Observability of Boolean networks: a graph-theoretic approach. Automatica, 49(8):2351-2362.
[10]Li BW, Lu JQ, Zhong J, et al., 2019a. Fast-time stability of temporal Boolean networks. IEEE Trans Neur Netw Learn Syst, 30(8):2285-2294.
[11]Li BW, Lu JQ, Liu Y, et al., 2019b. The outputs robustness of Boolean control networks via pinning control. IEEE Trans Contr Netw Syst, in press.
[12]Li BW, Lou JG, Liu Y, et al., 2019c. Robust invariant set analysis of Boolean networks. Complexity, 2019:2731395.
[13]Li R, Chu TG, 2012. Complete synchronization of Boolean networks. IEEE Trans Neur Netw Learn Syst, 23(5): 840-846.
[14]Li YY, 2017. Impulsive synchronization of stochastic neural networks via controlling partial states. Neur Process Lett, 46(1):59-69.
[15]Li YY, Li BW, Liu Y, et al., 2018a. Set stability and stabilization of switched Boolean networks with state-based switching. IEEE Access, 6:35624-35630.
[16]Li YY, Lou JG, Wang Z, et al., 2018b. Synchronization of dynamical networks with nonlinearly coupling function under hybrid pinning impulsive controllers. J Franklin Inst, 355(14):6520-6530.
[17]Li YY, Liu RJ, Lou JG, et al., 2019. Output tracking of Boolean control networks driven by constant reference signal. IEEE Access, 7:112572-112577.
[18]Liu RJ, Lu JQ, Liu Y, et al., 2018. Delayed feedback control for stabilization of Boolean control networks with state delay. IEEE Trans Neur Netw Learn Syst, 29(7):3283-3288.
[19]Liu Y, Sun LJ, Lu JQ, et al., 2016. Feedback controller design for the synchronization of Boolean control networks. IEEE Trans Neur Netw Learn Syst, 27(9):1991-1996.
[20]Liu Y, Li BW, Lu JQ, et al., 2017. Pinning control for the disturbance decoupling problem of Boolean networks. IEEE Trans Autom Contr, 62(12):6595-6601.
[21]Lu JQ, Zhong J, Ho DWC, et al., 2016. On controllability of delayed Boolean control networks. SIAM J Contr Optim, 54(2):475-494.
[22]Lu JQ, Sun LJ, Liu Y, et al., 2018. Stabilization of Boolean control networks under aperiodic sampled-data control. SIAM J Contr Optim, 56(6):4385-4404.
[23]Meng M, Lam J, Feng JE, et al., 2018. Stability and guaranteed cost analysis of time-triggered Boolean networks. IEEE Trans Neur Netw Learn Syst, 29(8):3893-3899.
[24]Richardson KA, 2005. Simplifying Boolean networks. Adv Compl Syst, 8(4):365-381.
[25]Shmulevich I, Lähdesmäki H, Dougherty ER, et al., 2003. The role of certain post classes in Boolean network models of genetic networks. PNAS, 100(19):10734-10739.
[26]Sun LJ, Lu JQ, Ching W, 2020. {Switching-based stabilization of aperiodic sampled-data Boolean control networks with all subsystems unstable. Front Inform Technol Electron Eng, 21(2):260-267.
[27]Tong LY, Liu Y, Li YY, et al., 2018. Robust control invariance of probabilistic Boolean control networks via event-triggered control. IEEE Access, 6:37767-37774.
[28]Wu YH, Shen TL, 2018. A finite convergence criterion for the discounted optimal control of stochastic logical networks. IEEE Trans Autom Contr, 63(1):262-268.
[29]Yang JJ, Lu JQ, Li LL, et al., 2019. Event-triggered control for the synchronization of Boolean control networks. Nonl Dynam, 96(2):1335-1344.
[30]Yang JJ, Lu JQ, Lou JG, et al., 2020. Synchronization of drive-response Boolean control networks with impulsive disturbances. Appl Math Comput, 364:124679.
[31]Zhong J, Lu JQ, Liu Y, et al., 2014. Synchronization in an array of output-coupled Boolean networks with time delay. IEEE Trans Neur Netw Learn Syst, 25(12):2288-2294.
[32]Zhong J, Lu JQ, Huang TW, et al., 2017. Controllability and synchronization analysis of identical-hierarchy mixed-valued logical control networks. IEEE Trans Cybern, 47(11):3482-3493.
[33]Zhong J, Liu Y, Kou K, et al., 2019. On the ensemble controllability of Boolean control networks using STP method. Appl Math Comput, 358:51-62.
[34]Zhong J, Li BW, Liu Y, et al., 2020. {Output feedback stabilizer design of Boolean networks based on network structure. Front Inform Technol Electron Eng, 21(2):247-259.
[35]Zhu QX, Liu Y, Lu JQ, et al., 2018. On the optimal control of Boolean control networks. SIAM J Contr Optim, 56(2):1321-1341.
[36]Zhu QX, Liu Y, Lu JQ, et al., 2019. Further results on the controllability of Boolean control networks. IEEE Trans Autom Contr, 64(1):440-442.
[37]Zhu SY, Lou JG, Liu Y, et al., 2018. Event-triggered control for the stabilization of probabilistic Boolean control networks. Complexity, 2018:9259348.
[38]Zhu SY, Lu JQ, Liu Y, 2019. Asymptotical stability of probabilistic Boolean networks with state delays. IEEE Trans Autom Contr, in press.
[39]Zou YL, Zhu JD, 2014. System decomposition with respect to inputs for Boolean control networks. Automatica, 50(4):1304-1309.
Open peer comments: Debate/Discuss/Question/Opinion
<1>