Full Text:   <1084>

Summary:  <1072>

CLC number: O233

On-line Access: 2020-03-04

Received: 2019-08-26

Revision Accepted: 2019-10-09

Crosschecked: 2019-12-13

Cited: 0

Clicked: 3065

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Jie Liu

https://orcid.org/0000-0003-0470-717X

Lulu Li

https://orcid.org/0000-0001-8965-2766

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2020 Vol.21 No.2 P.281-293

http://doi.org/10.1631/FITEE.1900438


Complete synchronization of coupled Boolean networks with arbitrary finite delays


Author(s):  Jie Liu, Lulu Li, Habib M. Fardoun

Affiliation(s):  School of Mathematics, Hefei University of Technology, Hefei 230009, China; more

Corresponding email(s):   PYSF_JL@163.com, lululima@hfut.edu.cn, hfardoun@kau.edu.sa

Key Words:  Boolean networks, Synchronization, Time delay


Jie Liu, Lulu Li, Habib M. Fardoun. Complete synchronization of coupled Boolean networks with arbitrary finite delays[J]. Frontiers of Information Technology & Electronic Engineering, 2020, 21(2): 281-293.

@article{title="Complete synchronization of coupled Boolean networks with arbitrary finite delays",
author="Jie Liu, Lulu Li, Habib M. Fardoun",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="21",
number="2",
pages="281-293",
year="2020",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1900438"
}

%0 Journal Article
%T Complete synchronization of coupled Boolean networks with arbitrary finite delays
%A Jie Liu
%A Lulu Li
%A Habib M. Fardoun
%J Frontiers of Information Technology & Electronic Engineering
%V 21
%N 2
%P 281-293
%@ 2095-9184
%D 2020
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1900438

TY - JOUR
T1 - Complete synchronization of coupled Boolean networks with arbitrary finite delays
A1 - Jie Liu
A1 - Lulu Li
A1 - Habib M. Fardoun
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 21
IS - 2
SP - 281
EP - 293
%@ 2095-9184
Y1 - 2020
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1900438


Abstract: 
In this study, the complete synchronization problem of coupled delayed boolean networks (CDBNs) is investigated. The state delays and output delays may not be equal, and the state delay in each Boolean network may be different in the proposed CDBN model. Based on the semi-tensor product of matrices, a necessary and sufficient condition for the complete synchronization of CDBNs is obtained. Then, an efficient algorithm for solving the synchronization of CDBNs is provided. Finally, numerical examples are presented to demonstrate the effectiveness of our algorithm.

具有任意有限延迟耦合布尔网络的完全同步

刘杰1,李露露1,Habib M. FARDOUN2
1合肥工业大学数学学院,中国合肥市,230009
2阿卜杜勒阿齐兹国王大学计算与信息技术学院,沙特阿拉伯吉达,21589

摘要:研究耦合延迟布尔网络完全同步性问题。文中所讨论的耦合延迟布尔网络模型中,状态延迟和输出延迟可能不相等,并且每个布尔网络中的状态延迟也可能不相等。基于矩阵半张量积获得耦合延迟布尔网络达到完全同步的充要条件。提供解决耦合延迟布尔网络完全同步性的有效算法。最后,通过数值算例说明该算法的有效性。

关键词:布尔网络;同步性;时滞

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Cheng DZ, Qi HS, 2010. A linear representation of dynamics of Boolean networks. IEEE Trans Autom Contr, 55(10):2251-2258.

[2]Cheng DZ, Qi HS, Li ZQ, 2011. Analysis and Control of Boolean Networks: a Semi-tensor Product Approach. Springer-Verlag, London.

[3]Fornasini E, Valcher ME, 2015. Fault detection analysis of Boolean control networks. IEEE Trans Autom Contr, 60(10):2734-2739.

[4]Guo YQ, Wang P, Gui WH, et al., 2015. Set stability and set stabilization of Boolean control networks based on invariant subsets. Automatica, 61:106-112.

[5]Heidel J, Maloney J, Farrow C, et al., 2003. Finding cycles in synchronous Boolean networks with applications to biochemical systems. Int J Bifurc Chaos, 13(3):535-552.

[6]Huang C, Lu JQ, Ho DWC, et al., 2020. Stabilization of probabilistic Boolean networks via pinning control strategy. Inform Sci, 510:205-217.

[7]Kauffman SA, 1969. Metabolic stability and epigenesis in randomly constructed genetic nets. J Theor Biol, 22(3):437-467.

[8]Kobayashi K, Hiraishi K, 2017. Design of probabilistic Boolean networks based on network structure and steady-state probabilities. IEEE Trans Neur Netw Learn Syst, 28(8):1966-1971.

[9]Laschov D, Margaliot M, Even G, 2013. Observability of Boolean networks: a graph-theoretic approach. Automatica, 49(8):2351-2362.

[10]Li BW, Lu JQ, Zhong J, et al., 2019a. Fast-time stability of temporal Boolean networks. IEEE Trans Neur Netw Learn Syst, 30(8):2285-2294.

[11]Li BW, Lu JQ, Liu Y, et al., 2019b. The outputs robustness of Boolean control networks via pinning control. IEEE Trans Contr Netw Syst, in press.

[12]Li BW, Lou JG, Liu Y, et al., 2019c. Robust invariant set analysis of Boolean networks. Complexity, 2019:2731395.

[13]Li R, Chu TG, 2012. Complete synchronization of Boolean networks. IEEE Trans Neur Netw Learn Syst, 23(5): 840-846.

[14]Li YY, 2017. Impulsive synchronization of stochastic neural networks via controlling partial states. Neur Process Lett, 46(1):59-69.

[15]Li YY, Li BW, Liu Y, et al., 2018a. Set stability and stabilization of switched Boolean networks with state-based switching. IEEE Access, 6:35624-35630.

[16]Li YY, Lou JG, Wang Z, et al., 2018b. Synchronization of dynamical networks with nonlinearly coupling function under hybrid pinning impulsive controllers. J Franklin Inst, 355(14):6520-6530.

[17]Li YY, Liu RJ, Lou JG, et al., 2019. Output tracking of Boolean control networks driven by constant reference signal. IEEE Access, 7:112572-112577.

[18]Liu RJ, Lu JQ, Liu Y, et al., 2018. Delayed feedback control for stabilization of Boolean control networks with state delay. IEEE Trans Neur Netw Learn Syst, 29(7):3283-3288.

[19]Liu Y, Sun LJ, Lu JQ, et al., 2016. Feedback controller design for the synchronization of Boolean control networks. IEEE Trans Neur Netw Learn Syst, 27(9):1991-1996.

[20]Liu Y, Li BW, Lu JQ, et al., 2017. Pinning control for the disturbance decoupling problem of Boolean networks. IEEE Trans Autom Contr, 62(12):6595-6601.

[21]Lu JQ, Zhong J, Ho DWC, et al., 2016. On controllability of delayed Boolean control networks. SIAM J Contr Optim, 54(2):475-494.

[22]Lu JQ, Sun LJ, Liu Y, et al., 2018. Stabilization of Boolean control networks under aperiodic sampled-data control. SIAM J Contr Optim, 56(6):4385-4404.

[23]Meng M, Lam J, Feng JE, et al., 2018. Stability and guaranteed cost analysis of time-triggered Boolean networks. IEEE Trans Neur Netw Learn Syst, 29(8):3893-3899.

[24]Richardson KA, 2005. Simplifying Boolean networks. Adv Compl Syst, 8(4):365-381.

[25]Shmulevich I, Lähdesmäki H, Dougherty ER, et al., 2003. The role of certain post classes in Boolean network models of genetic networks. PNAS, 100(19):10734-10739.

[26]Sun LJ, Lu JQ, Ching W, 2020. {Switching-based stabilization of aperiodic sampled-data Boolean control networks with all subsystems unstable. Front Inform Technol Electron Eng, 21(2):260-267.

[27]Tong LY, Liu Y, Li YY, et al., 2018. Robust control invariance of probabilistic Boolean control networks via event-triggered control. IEEE Access, 6:37767-37774.

[28]Wu YH, Shen TL, 2018. A finite convergence criterion for the discounted optimal control of stochastic logical networks. IEEE Trans Autom Contr, 63(1):262-268.

[29]Yang JJ, Lu JQ, Li LL, et al., 2019. Event-triggered control for the synchronization of Boolean control networks. Nonl Dynam, 96(2):1335-1344.

[30]Yang JJ, Lu JQ, Lou JG, et al., 2020. Synchronization of drive-response Boolean control networks with impulsive disturbances. Appl Math Comput, 364:124679.

[31]Zhong J, Lu JQ, Liu Y, et al., 2014. Synchronization in an array of output-coupled Boolean networks with time delay. IEEE Trans Neur Netw Learn Syst, 25(12):2288-2294.

[32]Zhong J, Lu JQ, Huang TW, et al., 2017. Controllability and synchronization analysis of identical-hierarchy mixed-valued logical control networks. IEEE Trans Cybern, 47(11):3482-3493.

[33]Zhong J, Liu Y, Kou K, et al., 2019. On the ensemble controllability of Boolean control networks using STP method. Appl Math Comput, 358:51-62.

[34]Zhong J, Li BW, Liu Y, et al., 2020. {Output feedback stabilizer design of Boolean networks based on network structure. Front Inform Technol Electron Eng, 21(2):247-259.

[35]Zhu QX, Liu Y, Lu JQ, et al., 2018. On the optimal control of Boolean control networks. SIAM J Contr Optim, 56(2):1321-1341.

[36]Zhu QX, Liu Y, Lu JQ, et al., 2019. Further results on the controllability of Boolean control networks. IEEE Trans Autom Contr, 64(1):440-442.

[37]Zhu SY, Lou JG, Liu Y, et al., 2018. Event-triggered control for the stabilization of probabilistic Boolean control networks. Complexity, 2018:9259348.

[38]Zhu SY, Lu JQ, Liu Y, 2019. Asymptotical stability of probabilistic Boolean networks with state delays. IEEE Trans Autom Contr, in press.

[39]Zou YL, Zhu JD, 2014. System decomposition with respect to inputs for Boolean control networks. Automatica, 50(4):1304-1309.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2022 Journal of Zhejiang University-SCIENCE