Full Text:   <5972>

Summary:  <1722>

CLC number: TN911.72; P733.23

On-line Access: 2021-07-20

Received: 2020-04-20

Revision Accepted: 2020-06-04

Crosschecked: 2020-08-06

Cited: 0

Clicked: 5187

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Xianbin Sun

https://orcid.org/0000-0002-2077-5757

Xinming Jia

https://orcid.org/0000-0003-1179-3862

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2021 Vol.22 No.7 P.1020-1030

http://doi.org/10.1631/FITEE.2000181


A data-driven method for estimating the target position of low-frequency sound sources in shallow seas


Author(s):  Xianbin Sun, Xinming Jia, Yi Zheng, Zhen Wang

Affiliation(s):  School of Mechanical and Automobile Engineering, Qingdao University of Technology, Qingdao 266000, China; more

Corresponding email(s):   robin_sun@qut.edu.cn, jiaxinming_123@163.com

Key Words:  Vector hydrophone, Shallow sea, Low frequency, Location estimation, Recurrent neural network


Share this article to: More <<< Previous Article|

Xianbin Sun, Xinming Jia, Yi Zheng, Zhen Wang. A data-driven method for estimating the target position of low-frequency sound sources in shallow seas[J]. Frontiers of Information Technology & Electronic Engineering, 2021, 22(7): 1020-1030.

@article{title="A data-driven method for estimating the target position of low-frequency sound sources in shallow seas",
author="Xianbin Sun, Xinming Jia, Yi Zheng, Zhen Wang",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="22",
number="7",
pages="1020-1030",
year="2021",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2000181"
}

%0 Journal Article
%T A data-driven method for estimating the target position of low-frequency sound sources in shallow seas
%A Xianbin Sun
%A Xinming Jia
%A Yi Zheng
%A Zhen Wang
%J Frontiers of Information Technology & Electronic Engineering
%V 22
%N 7
%P 1020-1030
%@ 2095-9184
%D 2021
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2000181

TY - JOUR
T1 - A data-driven method for estimating the target position of low-frequency sound sources in shallow seas
A1 - Xianbin Sun
A1 - Xinming Jia
A1 - Yi Zheng
A1 - Zhen Wang
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 22
IS - 7
SP - 1020
EP - 1030
%@ 2095-9184
Y1 - 2021
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2000181


Abstract: 
Estimating the target position of low-frequency sound sources in a shallow sea environment is difficult due to the high cost of hydrophone placement and the complexity of the propagation model. We propose a compressed recurrent neural network (C-RNN) model that compresses the signal received by a vector hydrophone into a dynamic sound intensity signal and compresses the target position of the sound source into a GeoHash code. Two types of data are used to carry out prior training on the recurrent neural network, and the trained network is subsequently used to estimate the target position of the sound source. Compared with traditional mathematical models, the C-RNN model functions independently under the complex sound field environment and terrain conditions, and allows for real-time positioning of the sound source under low-parameter operating conditions. Experimental results show that the average error of the model is 56 m for estimating the target position of a low-frequency sound source in a shallow sea environment.

一种基于数据驱动的浅海低频声源目标位置估计方法

孙显彬1,2,贾鑫明1,郑轶2,王振2
1青岛理工大学机械与汽车工程学院,中国青岛市,266000
2山东省科学院海洋仪器仪表研究所,中国青岛市,266000
摘要:由于水听器的布置成本高且水下声音传播模型复杂,在浅海环境中进行低频声源目标位置估计较为困难。提出一种基于数据驱动的压缩循环神经网络(compressed recurrent neural network, C-RNN)模型。该模型首先将矢量水听器接收到的声源信号压缩为动态声强信号,然后将声源位置进行GeoHash编码用于该模型的先验训练,最后使用训练好的模型进行浅海低频声源目标的位置估计。与传统数学模型相比,所提C-RNN模型能在复杂声场环境和地形条件下以低参数工况实时估计声源位置。实验结果表明,该模型对浅海环境中低频声源目标位置的平均定位精度为56米。

关键词:矢量水听器;浅海;低频;位置估计;循环神经网络

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Agarwal A, Kumar A, Agrawal M, 2015. Iterative adaptive approach to DOA estimation with acoustic vector sensors. OCEANS, p.1-8.

[2]Bharathi BMR, Mohanty AR, 2018. Underwater sound source localization by EMD-based maximum likelihood method. Acoust Aust, 46(2):193-203.

[3]Chai T, Draxler RR, 2014. Root mean square error (RMSE) or mean absolute error (MAE)?—Arguments against avoiding RMSE in the literature. Geosci Model Dev, 7(3):1247-1250.

[4]Chao A, Shen TJ, 2003. Nonparametric estimation of Shannon’s index of diversity when there are unseen species in sample. Environ Ecol Stat, 10(4):429-443.

[5]D’Spain GL, Luby JC, Wilson GR, et al., 2006. Vector sensors and vector sensor line arrays: comments on optimal array gain and detection. J Acoust Soc Am, 120(1):171-185.

[6]Demuth HB, Beale MH, Jess OD, et al., 2014. Neural Network Design. Martin Hagan.

[7]Dushaw B, 2014. Acoustic Tomography, Ocean. In: Njoku EG (Ed.), Encyclopedia of Remote Sensing. Springer, New York, USA, p.4-11.

[8]Felisberto P, Santos P, Jesus SM, 2010. Tracking source azimuth using a single vector sensor. Int Conf on Sensor Technologies and Applications, p.416-421.

[9]Fox A, Eichelberger C, Hughes J, et al., 2013. Spatio-temporal indexing in non-relational distributed databases. Int Conf on Big Data, p.291-299.

[10]Gu JX, Wang ZH, Kuen J, et al., 2018. Recent advances in convolutional neural networks. Patt Recogn, 77:354-377.

[11]Hildebrand JA, 2009. Anthropogenic and natural sources of ambient noise in the ocean. Mar Ecol Progr Ser, 395:5-20.

[12]Ian G, Yoshua B, Aaron C, 2016. Deep Learning. The MIT Press, USA.

[13]Li GY, Kawan B, Wang H, et al., 2017. Neural-network-based modelling and analysis for time series prediction of ship motion. Ship Technol Res, 64(1):30-39.

[14]Li TC, Su JY, Liu W, et al., 2017. Approximate Gaussian conjugacy: parametric recursive filtering under nonlinearity, multimodality, uncertainty, and constraint, and beyond. Front Inform Technol Electron Eng, 18(12):1913-1939.

[15]Moussalli R, Srivatsa M, Asaad S, 2015. Fast and flexible conversion of Geohash codes to and from latitude/ longitude coordinates. Proc IEEE 23rd Annual Int Symp on Field-Programmable Custom Computing Machines, p.179-186.

[16]Porter MB, 2011. The BELLHOP Manual and User’s Guide: Preliminary Draft. Technology Report, USA.

[17]Praczyk T, 2015. Using evolutionary neural networks to predict spatial orientation of a ship. Neurocomputing, 166:229-243.

[18]Prieto A, Prieto B, Ortigosa EM, et al., 2016. Neural networks: an overview of early research, current frameworks and new challenges. Neurocomputing, 214:242-268.

[19]van Gerven MAJ, Bohte SM, 2017. Editorial: artificial neural networks as models of neural information processing. Front Comput Neurosci, 11:114.

[20]Wittekind D, Schuster M, 2016. Propeller cavitation noise and background noise in the sea. Ocean Eng, 120:116-121.

[21]Zhao AB, Ma L, Ma XF, et al., 2017. An improved azimuth angle estimation method with a single acoustic vector sensor based on an active sonar detection system. Sensors, 17(2):412.

[22]Zhou JB, Zhang MH, Piao SC, et al., 2019. Low frequency ambient noise modeling and comparison with field measurements in the South China Sea. Appl Acoust, 148:34-39.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE