Full Text:   <1042>

Summary:  <951>

CLC number: 

On-line Access: 2021-04-15

Received: 2020-09-26

Revision Accepted: 2021-01-25

Crosschecked: 2021-03-15

Cited: 0

Clicked: 2552

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Zihang Qi

https://orcid.org/0000-0002-5488-6404

Xiuping Li

https://orcid.org/0000-0003-4350-9651

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2021 Vol.22 No.4 P.609-614

http://doi.org/10.1631/FITEE.2000503


Low-cost high-order-mode cavity backed slot array antenna using empty substrate integrated waveguide for the 5G n260 band


Author(s):  Zihang Qi, Xiuping Li, Hua Zhu

Affiliation(s):  School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China; more

Corresponding email(s):   qizihang@bupt.edu.cn, xpli@bupt.edu.cn, judy-cool@163.com

Key Words: 


Share this article to: More <<< Previous Article|

Zihang Qi, Xiuping Li, Hua Zhu. Low-cost high-order-mode cavity backed slot array antenna using empty substrate integrated waveguide for the 5G n260 band[J]. Frontiers of Information Technology & Electronic Engineering, 2021, 22(4): 609-614.

@article{title="Low-cost high-order-mode cavity backed slot array antenna using empty substrate integrated waveguide for the 5G n260 band",
author="Zihang Qi, Xiuping Li, Hua Zhu",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="22",
number="4",
pages="609-614",
year="2021",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2000503"
}

%0 Journal Article
%T Low-cost high-order-mode cavity backed slot array antenna using empty substrate integrated waveguide for the 5G n260 band
%A Zihang Qi
%A Xiuping Li
%A Hua Zhu
%J Frontiers of Information Technology & Electronic Engineering
%V 22
%N 4
%P 609-614
%@ 2095-9184
%D 2021
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2000503

TY - JOUR
T1 - Low-cost high-order-mode cavity backed slot array antenna using empty substrate integrated waveguide for the 5G n260 band
A1 - Zihang Qi
A1 - Xiuping Li
A1 - Hua Zhu
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 22
IS - 4
SP - 609
EP - 614
%@ 2095-9184
Y1 - 2021
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2000503


Abstract: 
A low-cost slot array antenna is proposed for fifth-generation wireless communication (5G) n260 band applications. The antenna is based on the low-cost printed circuit board (PCB) material FR-4. Empty substrate-integrated waveguide is used to avoid high dielectric loss. High-order-mode cavities are introduced to reduce the complexity of the feeding network. The proposed antenna shows a maximum realized gain of 27 dBi with a radiation efficiency of 72.4%. The measurement and simulation results achieve good agreement. The proposed antenna can be a good candidate for low-cost millimeter-wave (mmWave) wireless communication systems.

面向5G n260应用的低成本基片集成空腔波导高次模背腔缝隙天线阵

齐紫航1,2,3,李秀萍1,2,3,朱华1,2,3
1北京邮电大学电子工程学院,中国北京市,100876
2智能监控北京市重点实验室,中国北京市,100876
3泛网无线通信教育部重点实验室,中国北京市,100876
概要:毫米波天线设计面临高增益、宽带、低成本等诸多挑战,在该频段基片集成波导(Substrate Integrated Waveguide,SIW)由于其辐射损耗低和易集成的优势而被广泛应用。然而在毫米波频段SIW的介质损耗直接降低了天线辐射效率,若采用低损耗介质材料会导致较高的制造成本。基片集成空腔波导(Empty Substrate Integrated Waveguide,ESIW)结构通过去除SIW中介质,可实现电磁波低损耗传输,在毫米波频段具有广阔应用前景。本文面向5G n260频段应用,提出一款采用低成本FR-4 PCB板材设计的缝隙天线阵。天线采用基片集成空腔波导结构设计,消除了介质损耗,并引入高次模腔体结构,减小馈电网络复杂度,在保证天线性能前提下,实现了毫米波天线低成本制造,为低成本毫米波天线设计提供了技术参考。
天线由5层FR-4 PCB板组成,从顶层往下依次为缝隙辐射层、高次模腔体层、耦合缝隙层、功分馈电网络层以及同轴馈电层。天线底部由2.4 mm同轴馈电,通过ESIW功分馈电网络,缝隙耦合激励4×4个腔体中的TE340模式,每个TE340模式的腔体通过顶层的3×4个缝隙辐射,形成12×16的缝隙阵列。每层PCB板都将ESIW部分的介质去除并进行内壁覆铜处理,加工完成的PCB板通过周围的定位孔用螺钉组装。给出了测试S参数与仿真S参数以及测试增益与仿真增益的对比结果。S参数−8 dB带宽可覆盖n260的37–40 GHz频率范围。测试的最大实际增益为27 dBi,通过与仿真的方向性系数对比,可估计得到天线辐射效率约为72.4%。从天线在37、38、39、40 GHz处的辐射方向图看,测试的方向图与仿真结果具有很好一致性。

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Belenguer A, Esteban H, Boria VE, 2014. Novel empty substrate integrated waveguide for high-performance microwave integrated circuits. IEEE Trans Microw Theory Techn, 62(4):832-839.

[2]Chen XP, Wu K, Han L, et al., 2010. Low-cost high gain planar antenna array for 60-GHz band applications. IEEE Trans Antenn Propag, 58(6):2126-2129.

[3]Chu P, Hong W, Wang KD, et al., 2014. Balanced substrate integrated waveguide filter. IEEE Trans Microw Theory Techn, 62(4):824-831.

[4]Ding Y, Wu K, 2009. A 4×4 ridge substrate integrated waveguide (RSIW) slot array antenna. IEEE Antenn Wirel Propag Lett, 8:561-564.

[5]Ghiotto A, Parment F, Vuong TP, et al., 2017. Millimeter-wave air-filled SIW antipodal linearly tapered slot antenna. IEEE Antenn Wirel Propag Lett, 16:768-771.

[6]Han WW, Yang F, Ouyang J, et al., 2015. Low-cost wideband and high-gain slotted cavity antenna using high-order modes for millimeter-wave application. IEEE Trans Antenn Propag, 63(11):4624-4631.

[7]Jin LK, Lee RMA, Robertson I, 2014. Analysis and design of a novel low-loss hollow substrate integrated waveguide. IEEE Trans Microw Theory Techn, 62(8):1616-1624.

[8]Kim DY, Chung W, Park C, et al., 2011. Design of a 45°-inclined SIW resonant series slot array antenna for Ka-band. IEEE Antenn Wirel Propag Lett, 10:318-321.

[9]Li YJ, Wang JH, Luk KM, 2017. Millimeter-wave multibeam aperture-coupled magnetoelectric dipole array with planar substrate integrated beamforming network for 5G applications. IEEE Trans Antenn Propag, 65(12):6422-6431.

[10]Liu B, Zhao RR, Ma Y, et al., 2018. A 45° linearly polarized slot array antenna with substrate integrated coaxial line technique. IEEE Antenn Wirel Propag Lett, 17(2):339-342.

[11]Parment F, Ghiotto A, Vuong TP, et al., 2014. Broadband transition from dielectric-filled to air-filled substrate integrated waveguide for low loss and high power handling millimeter-wave substrate integrated circuits. Proc IEEE MTT-S Int Microwave Symp, p.1-3.

[12]Parment F, Ghiotto A, Vuong TP, et al., 2015. Air-filled substrate integrated waveguide for low-loss and high power-handling millimeter-wave substrate integrated circuits. IEEE Trans Microw Theory Techn, 63(4):1228-1238.

[13]Parment F, Ghiotto A, Vuong TP, et al., 2016. Double dielectric slab-loaded air-filled SIW phase shifters for high-performance millimeter-wave integration. IEEE Trans Microw Theory Techn, 64(9):2833-2842.

[14]Parment F, Ghiotto A, Vuong TP, et al., 2017a. Ka-band compact and high-performance bandpass filter based on multilayer air-filled SIW. Electron Lett, 53(7):486-488.

[15]Parment F, Ghiotto A, Vuong TP, et al., 2017b. Millimetre-wave air-filled substrate integrated waveguide slot array antenna. Electron Lett, 53(11):704-706.

[16]Pasian M, Silvestri L, Rave C, et al., 2017. Substrate-integrated-waveguide E-plane 3-dB power-divider/ combiner based on resistive layers. IEEE Trans Microw Theory Techn, 65(5):1498-1510.

[17]Qi ZH, Li XP, Xiao J, et al., 2019. Low-cost empty substrate integrated waveguide slot arrays for millimeter-wave applications. IEEE Antenn Wirel Propag Lett, 18(5):1021-1025.

[18]Ranjkesh N, Shahabadi M, 2006. Reduction of dielectric losses in substrate integrated waveguide. Electron Lett, 42(21):1230-1232.

[19]Yuan Q, Hao ZC, Fan KK, et al., 2018. A compact W-band substrate-integrated cavity array antenna using high-order resonating modes. IEEE Trans Antenn Propag, 66(12):7400-7405.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2022 Journal of Zhejiang University-SCIENCE