CLC number:
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2021-03-15
Cited: 0
Clicked: 5799
Citations: Bibtex RefMan EndNote GB/T7714
Zihang Qi, Xiuping Li, Hua Zhu. Low-cost high-order-mode cavity backed slot array antenna using empty substrate integrated waveguide for the 5G n260 band[J]. Frontiers of Information Technology & Electronic Engineering, 2021, 22(4): 609-614.
@article{title="Low-cost high-order-mode cavity backed slot array antenna using empty substrate integrated waveguide for the 5G n260 band",
author="Zihang Qi, Xiuping Li, Hua Zhu",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="22",
number="4",
pages="609-614",
year="2021",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2000503"
}
%0 Journal Article
%T Low-cost high-order-mode cavity backed slot array antenna using empty substrate integrated waveguide for the 5G n260 band
%A Zihang Qi
%A Xiuping Li
%A Hua Zhu
%J Frontiers of Information Technology & Electronic Engineering
%V 22
%N 4
%P 609-614
%@ 2095-9184
%D 2021
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2000503
TY - JOUR
T1 - Low-cost high-order-mode cavity backed slot array antenna using empty substrate integrated waveguide for the 5G n260 band
A1 - Zihang Qi
A1 - Xiuping Li
A1 - Hua Zhu
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 22
IS - 4
SP - 609
EP - 614
%@ 2095-9184
Y1 - 2021
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2000503
Abstract: A low-cost slot array antenna is proposed for fifth-generation wireless communication (5G) n260 band applications. The antenna is based on the low-cost printed circuit board (PCB) material FR-4. Empty substrate-integrated waveguide is used to avoid high dielectric loss. High-order-mode cavities are introduced to reduce the complexity of the feeding network. The proposed antenna shows a maximum realized gain of 27 dBi with a radiation efficiency of 72.4%. The measurement and simulation results achieve good agreement. The proposed antenna can be a good candidate for low-cost millimeter-wave (mmWave) wireless communication systems.
[1]Belenguer A, Esteban H, Boria VE, 2014. Novel empty substrate integrated waveguide for high-performance microwave integrated circuits. IEEE Trans Microw Theory Techn, 62(4):832-839.
[2]Chen XP, Wu K, Han L, et al., 2010. Low-cost high gain planar antenna array for 60-GHz band applications. IEEE Trans Antenn Propag, 58(6):2126-2129.
[3]Chu P, Hong W, Wang KD, et al., 2014. Balanced substrate integrated waveguide filter. IEEE Trans Microw Theory Techn, 62(4):824-831.
[4]Ding Y, Wu K, 2009. A 4×4 ridge substrate integrated waveguide (RSIW) slot array antenna. IEEE Antenn Wirel Propag Lett, 8:561-564.
[5]Ghiotto A, Parment F, Vuong TP, et al., 2017. Millimeter-wave air-filled SIW antipodal linearly tapered slot antenna. IEEE Antenn Wirel Propag Lett, 16:768-771.
[6]Han WW, Yang F, Ouyang J, et al., 2015. Low-cost wideband and high-gain slotted cavity antenna using high-order modes for millimeter-wave application. IEEE Trans Antenn Propag, 63(11):4624-4631.
[7]Jin LK, Lee RMA, Robertson I, 2014. Analysis and design of a novel low-loss hollow substrate integrated waveguide. IEEE Trans Microw Theory Techn, 62(8):1616-1624.
[8]Kim DY, Chung W, Park C, et al., 2011. Design of a 45°-inclined SIW resonant series slot array antenna for Ka-band. IEEE Antenn Wirel Propag Lett, 10:318-321.
[9]Li YJ, Wang JH, Luk KM, 2017. Millimeter-wave multibeam aperture-coupled magnetoelectric dipole array with planar substrate integrated beamforming network for 5G applications. IEEE Trans Antenn Propag, 65(12):6422-6431.
[10]Liu B, Zhao RR, Ma Y, et al., 2018. A 45° linearly polarized slot array antenna with substrate integrated coaxial line technique. IEEE Antenn Wirel Propag Lett, 17(2):339-342.
[11]Parment F, Ghiotto A, Vuong TP, et al., 2014. Broadband transition from dielectric-filled to air-filled substrate integrated waveguide for low loss and high power handling millimeter-wave substrate integrated circuits. Proc IEEE MTT-S Int Microwave Symp, p.1-3.
[12]Parment F, Ghiotto A, Vuong TP, et al., 2015. Air-filled substrate integrated waveguide for low-loss and high power-handling millimeter-wave substrate integrated circuits. IEEE Trans Microw Theory Techn, 63(4):1228-1238.
[13]Parment F, Ghiotto A, Vuong TP, et al., 2016. Double dielectric slab-loaded air-filled SIW phase shifters for high-performance millimeter-wave integration. IEEE Trans Microw Theory Techn, 64(9):2833-2842.
[14]Parment F, Ghiotto A, Vuong TP, et al., 2017a. Ka-band compact and high-performance bandpass filter based on multilayer air-filled SIW. Electron Lett, 53(7):486-488.
[15]Parment F, Ghiotto A, Vuong TP, et al., 2017b. Millimetre-wave air-filled substrate integrated waveguide slot array antenna. Electron Lett, 53(11):704-706.
[16]Pasian M, Silvestri L, Rave C, et al., 2017. Substrate-integrated-waveguide E-plane 3-dB power-divider/ combiner based on resistive layers. IEEE Trans Microw Theory Techn, 65(5):1498-1510.
[17]Qi ZH, Li XP, Xiao J, et al., 2019. Low-cost empty substrate integrated waveguide slot arrays for millimeter-wave applications. IEEE Antenn Wirel Propag Lett, 18(5):1021-1025.
[18]Ranjkesh N, Shahabadi M, 2006. Reduction of dielectric losses in substrate integrated waveguide. Electron Lett, 42(21):1230-1232.
[19]Yuan Q, Hao ZC, Fan KK, et al., 2018. A compact W-band substrate-integrated cavity array antenna using high-order resonating modes. IEEE Trans Antenn Propag, 66(12):7400-7405.
Open peer comments: Debate/Discuss/Question/Opinion
<1>