Full Text:   <9478>

Summary:  <530>

CLC number: TP212

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2021-09-21

Cited: 0

Clicked: 5309

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Chen LI

https://orcid.org/0000-0003-1418-1853

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2022 Vol.23 No.5 P.801-809

http://doi.org/10.1631/FITEE.2100236


Wireless passive flexible accelerometer fabricated using micro-electro-mechanical system technology for bending structure surfaces


Author(s):  Chen LI, Mangu JIA, Yingping HONG, Yanan XUE, Jijun XIONG

Affiliation(s):  Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Taiyuan 030051, China; more

Corresponding email(s):   lichen@nuc.edu.cn

Key Words:  Bending structure surfaces, Flexible accelerometer, Micro-electro-mechanical system (MEMS) technology, Wireless non-contact measurement


Chen LI, Mangu JIA, Yingping HONG, Yanan XUE, Jijun XIONG. Wireless passive flexible accelerometer fabricated using micro-electro-mechanical system technology for bending structure surfaces[J]. Frontiers of Information Technology & Electronic Engineering, 2022, 23(5): 801-809.

@article{title="Wireless passive flexible accelerometer fabricated using micro-electro-mechanical system technology for bending structure surfaces",
author="Chen LI, Mangu JIA, Yingping HONG, Yanan XUE, Jijun XIONG",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="23",
number="5",
pages="801-809",
year="2022",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2100236"
}

%0 Journal Article
%T Wireless passive flexible accelerometer fabricated using micro-electro-mechanical system technology for bending structure surfaces
%A Chen LI
%A Mangu JIA
%A Yingping HONG
%A Yanan XUE
%A Jijun XIONG
%J Frontiers of Information Technology & Electronic Engineering
%V 23
%N 5
%P 801-809
%@ 2095-9184
%D 2022
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2100236

TY - JOUR
T1 - Wireless passive flexible accelerometer fabricated using micro-electro-mechanical system technology for bending structure surfaces
A1 - Chen LI
A1 - Mangu JIA
A1 - Yingping HONG
A1 - Yanan XUE
A1 - Jijun XIONG
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 23
IS - 5
SP - 801
EP - 809
%@ 2095-9184
Y1 - 2022
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2100236


Abstract: 
We propose an inductor-capacitor (LC) wireless passive flexible accelerometer, which eliminates the difficulty in measuring the acceleration on the surface of a bending structure. The accelerometer is composed of a flexible polyimide (PI) substrate and a planar spiral inductance coil (thickness 300 nm), made using micro-electro-mechanical system (MEMS) technology. It can be bent or folded at will, and can be attached firmly to the surface of objects with a bending structure. The principle of radio frequency wireless transmission is used to measure the acceleration signal by changing the distance between the accelerometer and the antenna. Compared with other accelerometers with a lead wire, the accelerometer can prevent the lead from falling off in the course of vibration, thereby prolonging its service life. Through establishment of an experimental platform, when the distance between the antenna and accelerometer was 5 mm, the characterization of the surface of bending structures demonstrated the sensing capabilities of the accelerometer at accelerations of 20‒100 m/s2. The results indicate that the acceleration and peak-to-peak output voltage were nearly linear, with accelerometer sensitivity reaching 0.27 mV/(m·s−2). Moreover, the maximum error of the accelerometer was less than 0.037%.

利用微机电系统技术制作弯曲结构表面无线无源柔性加速度计

李晨1,2,贾蔓谷1,洪应平2,薛亚楠2,熊继军2
1中北大学电子测试技术重点实验室,中国太原市,030051
2中北大学仪器科学与动态测试教育部重点实验室,中国太原市,030051
摘要:提出一种LC无线无源柔性加速度计,解决测量弯曲结构表面加速度的困难。该加速度计由柔性聚酰亚胺(PI)衬底和平面螺旋电感(厚度为300 nm)组成,采用微机电系统(MEMS)技术,可任意弯曲或折叠,可牢固地粘附在具有弯曲结构的物体表面。利用射频无线传输原理,通过改变加速度计与天线之间的距离来测量加速度信号。与带导线的加速度计相比,该加速度计可以防止导线在振动过程中脱落,从而延长其使用寿命。通过搭建实验平台,当天线与加速度计之间的距离为5 mm时,在弯曲结构表面展示了加速度计在20至100 m/s2加速度下的传感能力。结果表明,加速度和峰峰值输出电压接近线性,加速度计灵敏度高达0.27 mV/(m·s−2)。此外,该加速度计的最大误差小于0.037%。

关键词:弯曲结构表面;柔性加速度计;微机电系统(MEMS)技术;无线非接触式测量

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Benmessaoud M, Nasreddine MM, 2013. Optimization of MEMS capacitive accelerometer. Microsyst Technol, 19(5):713-720.

[2]Choi W, Ahn B, 2019. A flexible sensor for suture training. IEEE Robot Autom Lett, 4(4):4539-4546.

[3]Dwivedi A, Khanna G, 2020. A microelectromechanical system (MEMS) capacitive accelerometer-based microphone with enhanced sensitivity for fully implantable hearing aid: a novel analytical approach. Biomed Eng/Biomed Techn, 65(6):735-746.

[4]Ghemari Z, Salah S, 2018. Piezoresistive accelerometer mathematical model development with experimental validation. IEEE Sens J, 18(7):2690-2696.

[5]Han JQ, Zhao ZQ, Niu WJ, et al., 2018. A low cross-axis sensitivity piezoresistive accelerometer fabricated by masked-maskless wet etching. Sens Actuat A Phys, 283:17-25.

[6]Ji YH, Tan QL, Lu X, et al., 2019. Wireless passive separated LC temperature sensor based on high-temperature co-fired ceramic operating up to 1500 °C. J Micromech Microeng, 29(3):035015.

[7]Lee D, Kim J, Kim H, et al., 2018. High-performance transparent pressure sensors based on sea-urchin shaped metal nanoparticles and polyurethane microdome arrays for real-time monitoring. Nanoscale, 10(39):18812-18820.

[8]Lee JM, Jang CU, Choi CJ, et al., 2016. High-shock silicon accelerometer with a plate spring. Int J Prec Eng Manuf, 17(5):637-644.

[9]Lee Y, Park J, Cho S, et al., 2018. Flexible ferroelectric sensors with ultrahigh pressure sensitivity and linear response over exceptionally broad pressure range. ACS Nano, 12(4):4045-4054.

[10]Li C, Xue YN, Jia PY, et al., 2021. A wireless passive vibration sensor based on high-temperature ceramic for harsh environment. J Sens, 2021:8875907.

[11]Lin BM, Tan QL, Zhang GJ, et al., 2021. Temperature and pressure composite measurement system based on wireless passive LC sensor. IEEE Trans Instrum Meas, 70:9502811.

[12]Ma MS, Khan H, Shan W, et al., 2017. A novel wireless gas sensor based on LTCC technology. Sens Actuat B Chem, 239:711-717.

[13]Ma MS, Wang Y, Liu F, et al., 2019. Passive wireless LC proximity sensor based on LTCC technology. Sensors, 19(5):1110.

[14]Wang C, Hou XJ, Cui M, et al., 2020. An ultra-sensitive and wide measuring range pressure sensor with paper-based CNT film/interdigitated structure. Sci China Mater, 63(3):403-412.

[15]Wang S, Chen GR, Niu SY, et al., 2019. Magnetic-assisted transparent and flexible percolative composite for highly sensitive piezoresistive sensor via hot embossing technology. ACS Appl Mater Interf, 11(51):48331-48340.

[16]Yaghootkar B, Azimi S, Bahreyni B, 2017. A high-performance piezoelectric vibration sensor. IEEE Sens J, 17(13):4005-4012.

[17]Yamane D, Matsushima T, Konishi T, et al., 2016. A dual-axis MEMS capacitive inertial sensor with high-density proof mass. Microsyst Technol, 22(3):459-464.

[18]Zega V, Cred C, Bernasconi R, et al., 2018. The first 3-D-printed z-axis accelerometers with differential capacitive sensing. IEEE Sens J, 18(1):53-60.

[19]Zhang GJ, Tan QL, Lin BM, et al., 2019. A novel temperature and pressure measuring scheme based on LC sensor for ultra-high temperature environment. IEEE Access, 7:162747-162755.

[20]Zhang HC, Wei XY, Ding YY, et al., 2019. A low noise capacitive MEMS accelerometer with anti-spring structure. Sens Actuat A Phys, 296:79-86.

[21]Zhang HC, Wei XY, Gao Y, et al., 2020. Analytical study and thermal compensation for capacitive MEMS accelerometer with anti-spring structure. J Microelectromech Syst, 29(5):1389-1400.

[22]Zhang M, Xia LP, Dang SH, et al., 2020. Self-powered flexible pressure sensors based on nanopatterned polymer films. Sens Rev, 40(6):629-635.

[23]Zhao P, Zhou YF, 2020. Active vibration control of flexible-joint manipulators using accelerometers. Ind Robot, 47(1):33-44.

[24]Zhong LJ, Yang J, Xu DL, et al., 2020. Bandwidth-enhanced oversampling successive approximation readout technique for low-noise power-efficient MEMS capacitive accelerometer. IEEE J Sol-State Circ, 55(9):2529-2538.

[25]Zhu BW, Ling YZ, Yap LW, et al., 2019. Hierarchically structured vertical gold nanowire array-based wearable pressure sensors for wireless health monitoring. ACS Appl Mater Interf, 11(32):29014-29021.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE