CLC number: TN015
On-line Access: 2023-02-27
Received: 2022-06-18
Revision Accepted: 2022-10-30
Crosschecked: 2023-02-27
Cited: 0
Clicked: 1912
Citations: Bibtex RefMan EndNote GB/T7714
Yahui ZHU, Jing CAI, Wei QIN, Wenwen YANG, Jianxin CHEN. Compact input-reflectionless balanced bandpass filter with flexible bandwidth using three-line coupled structure[J]. Frontiers of Information Technology & Electronic Engineering, 2023, 24(2): 314-326.
@article{title="Compact input-reflectionless balanced bandpass filter with flexible bandwidth using three-line coupled structure",
author="Yahui ZHU, Jing CAI, Wei QIN, Wenwen YANG, Jianxin CHEN",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="24",
number="2",
pages="314-326",
year="2023",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2200261"
}
%0 Journal Article
%T Compact input-reflectionless balanced bandpass filter with flexible bandwidth using three-line coupled structure
%A Yahui ZHU
%A Jing CAI
%A Wei QIN
%A Wenwen YANG
%A Jianxin CHEN
%J Frontiers of Information Technology & Electronic Engineering
%V 24
%N 2
%P 314-326
%@ 2095-9184
%D 2023
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2200261
TY - JOUR
T1 - Compact input-reflectionless balanced bandpass filter with flexible bandwidth using three-line coupled structure
A1 - Yahui ZHU
A1 - Jing CAI
A1 - Wei QIN
A1 - Wenwen YANG
A1 - Jianxin CHEN
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 24
IS - 2
SP - 314
EP - 326
%@ 2095-9184
Y1 - 2023
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2200261
Abstract: A compact input-reflectionless balanced bandpass filter (BPF) with flexible bandwidth (BW) using a three-line coupled structure (TLCS) is presented in this paper. For the differential mode (DM), the TLCS is applied to achieve the bandpass response; meanwhile, the input coupled-feed line of the TLCS is reused in the input absorption network. This design shows a good fusion of the absorptive and BPF sections, effectively reducing the circuit size, and the BWs of the two sections that can be controlled separately result in a flexibly controllable DM response BW of the proposed input-reflectionless balanced BPF. Detailed analyses of the ratio of the two-part BWs have been given for the first time, which is vital for the passband flatness and reflectionless feature. In the codesign of this work, the input-reflectionless DM bandpass response can be optimized easily, while wideband common mode (CM) noise absorption is achieved by the input absorption network. To verify the design method, a prototype with a compact layout (0.52λ×0.36λ) is designed and measured in the 0‒7.0 GHz range. The DM center frequency (f0) is 2.45 GHz with a measured 3 dB fractional bandwidth of 31.4%. The simulation and measurement results with good agreement are presented, showing good performance, e.g., low insertion loss (0.43 dB), wide upper stopband for the DM bandpass response (over 20 dB rejection level up to 2.72f0), and wideband DM reflectionless and CM noise absorption (fractional absorption bandwidth of 285.7%).
[1]Bi XJ, Zeng X, Xu QF, 2020. Slotline-based balanced filter with ultra-wide stopband and high selectivity. IEEE Trans Circ Syst II Exp Briefs, 67(3):460-464.
[2]Cao YF, Zhang Y, Zhang XY, 2020. Filtering antennas: from innovative concepts to industrial applications. Front Inform Technol Electron Eng, 21(1):116-127.
[3]Chen CP, Oda J, Kamata K, et al., 2013. An iterative synthesis scheme for wideband filter based on parallel-coupled three-line. IEEE European Microwave Conf, p.889-892.
[4]Chen JX, Zhan Y, Xue Q, 2015. Novel LTCC distributed-element wideband bandpass filter based on the dual-mode stepped-impedance resonator. IEEE Trans Compon Packag Manuf Technol, 5(3):372-380.
[5]Chen JX, Zhan Y, Qin W, et al., 2016. Analysis and design of balanced dielectric resonator bandpass filters. IEEE Trans Microw Theory Techn, 64(5):1476-1483.
[6]Chen X, Yang T, Chi PL, 2021. Arbitrary-order balanced filter with reflectionless characteristics for both common- and differential-mode signals. IEEE Microw Wirel Compon Lett, 31(6):553-556.
[7]Fan MY, Song KJ, Yang L, et al., 2021a. Frequency-reconfigurable input-reflectionless bandpass filter and filtering power divider with constant absolute bandwidth. IEEE Trans Circ Syst II Exp Briefs, 68(7):2424-2428.
[8]Fan MY, Song KJ, Yang L, et al., 2021b. Frequency-tunable constant-absolute-bandwidth single-/dual-passband filters and diplexers with all-port-reflectionless behavior. IEEE Trans Microw Theory Techn, 69(2):1365-1377.
[9]Feng WJ, Che WQ, 2012. Wideband balanced bandpass filter based on three-line coupled structure. Electron Lett, 48(16):1006-1008.
[10]Feng WJ, Che WQ, Shi YR, et al., 2019. Balanced rat-race couplers with wideband common-mode suppression. IEEE Trans Microw Theory Techn, 67(12):4724-4732.
[11]Feng WJ, Pan BS, Zhu HS, et al., 2021. High performance balanced bandpass filters with wideband common mode suppression. IEEE Trans Circ Syst II Exp Briefs, 68(6):1897-1901.
[12]Gómez-García R, Muñoz-Ferreras JM, Psychogiou D, et al., 2018. Balanced symmetrical quasi-reflectionless single-and dual-band bandpass planar filters. IEEE Microw Wirel Compon Lett, 28(9):798-800.
[13]Gómez-García R, Muñoz-Ferreras JM, Psychogiou D, 2019. Symmetrical quasi-absorptive RF bandpass filters. IEEE Trans Microw Theory Techn, 67(4):1472-1482.
[14]Guilabert A, Morgan MA, Boyd TA, 2019. Reflectionless filters for generalized elliptic transmission functions. IEEE Trans Circ Syst I Reg Papers, 66(12):4606-4618.
[15]Han Y, Chang YM, Che WQ, 2022. Frequency-selective rasorbers: a view of frequency-selective rasorbers and their application in reducing the radar cross sections of antennas. IEEE Microw Mag, 23(2):86-98.
[16]Kou N, Yu SX, Ding Z, et al., 2022. Monopulse transmitarray antenna fed by aperture-coupled microstrip structure. Front Inform Technol Electron Eng, 23(3):502-510.
[17]Lee B, Lee JH, Lee G, et al., 2022. All-port-reflectionless narrowband filtering power divider topology with generic equations. IEEE Trans Circ Syst I Reg Papers, 69(4):1417-1426.
[18]Lee J, Lee JH, Barker NS, 2021. Rigorous design of input-reflectionless filter with Chebyshev response and exact approach to increase reflectionless range. IEEE Trans Microw Theory Techn, 69(10):4460-4475.
[19]Li HY, Xu JX, Zhang XY, 2019. Substrate integrated waveguide filtering rat-race coupler based on orthogonal degenerate modes. IEEE Trans Microw Theory Techn, 67(1):140-150.
[20]Li YC, Wu DS, Xue Q, et al., 2020. Miniaturized single-ended and balanced dual-band diplexers using dielectric resonators. IEEE Trans Microw Theory Techn, 68(10):4257-4266.
[21]Lin TY, Wu TL, 2020. Balanced bandpass filter with common-mode reflectionless feature by terminated coupled lines. IEEE Trans Electromagn Compat, 62(4):1090-1097.
[22]Lin TY, Huang YC, Wu TL, 2019. Novel absorptive balanced bandpass filters using resistive loaded transmission lines. IEEE Trans Compon Packag Manuf Technol, 9(4):745-753.
[23]Morgan MA, Boyd TA, 2015. Reflectionless filter structures. IEEE Trans Microw Theory Techn, 63(4):1263-1271.
[24]Morgan MA, Groves WM, Boyd TA, 2019. Reflectionless filter topologies supporting arbitrary low-pass ladder prototypes. IEEE Trans Circ Syst I Reg Papers, 66(2):594-604.
[25]Pozar DM, 2012. Microwave Engineering (4th Ed.). New York, USA, p.188-190.
[26]Shi J, Xu K, Zhang W, et al., 2016. An approach to 1-to-2n way microstrip balanced power divider. IEEE Trans Microw Theory Techn, 64(12):4222-4231.
[27]Song KJ, Yao JC, Chen YX, et al., 2020. Balanced diplexer based on substrate integrated waveguide dual-mode resonator. IEEE Trans Microw Theory Techn, 68(12):5279-5287.
[28]Wang XY, Tang SC, Chen JX, 2022. Differential-fed pattern-reconfigurable dielectric patch antenna and array with low cross-polarization. IEEE Trans Antenn Propag, 70(5):3870-3875.
[29]Wu DS, Li YC, Xue Q, et al., 2022. Balanced dielectric resonator filters with multiple reconfigurable passbands. IEEE Trans Microw Theory Techn, 70(1):180-189.
[30]Wu XH, Li YS, Liu XG, 2020. High-order dual-port quasi-absorptive microstrip coupled-line bandpass filters. IEEE Trans Microw Theory Techn, 68(4):1462-1475.
[31]Xu KD, Bai YC, Ren X, et al., 2019. Broadband filtering power dividers using simple three-line coupled structures. IEEE Trans Compon Packag Manuf Technol, 9(6):1103-1110.
[32]Xu KD, Lu S, Guo YJ, et al., 2022. Quasi-reflectionless filters using simple coupled line and T-shaped microstrip structures. IEEE J Radio Freq Identif, 6(1):54-63.
[33]Yamamoto S, Azakami T, Itakura K, 1966. Coupled strip transmission line with three center conductors. IEEE Trans Microw Theory Techn, 14(10):446-461.
[34]Yang L, Gómez-García R, Fan MY, 2020. Input-reflectionless balanced wideband bandpass filter using multilayered vertical transitions. IEEE Asia-Pacific Microwave Conf, p.443-449.
[35]Yu W, Xu L, Zhang XY, et al., 2022. Dual-band dual-mode dielectric resonator filtering power divider with flexible output phase difference and power split ratio. IEEE Trans Microw Theory Techn, 70(1):190-199.
[36]Zhang WW, Wu YL, Liu YA, et al., 2017. Planar wideband differential-mode bandpass filter with common-mode noise absorption. IEEE Microw Wirel Compon Lett, 27(5):458-460.
[37]Zhang YF, Wu YL, Wang WM, et al., 2022. High-performance common- and differential-mode reflectionless balanced band-pass filter using coupled ring resonator. IEEE Trans Circ Syst II Exp Briefs, 69(3):974-978.
[38]Zhang ZQ, Zhang B, Li DT, et al., 2021. A mechanical reliability study of 3-dB waveguide hybrid couplers in submillimeter and terahertz bands. Front Inform Technol Electron Eng, 22(8):1104-1113.
[39]Zhou WJ, Chen JX, 2017. High-selectivity tunable balanced bandpass filter with constant absolute bandwidth. IEEE Trans Circ Syst II Exp Briefs, 64(8):917-921.
[40]Zhu Y, Song KJ, Fan MY, et al., 2020. Wideband balanced bandpass filter with common-mode noise absorption using double-sided parallel-strip line. IEEE Microw Wirel Compon Lett, 30(4):359-362.
[41]Zhu YH, Cai J, Chen JX, 2022. Quasi-reflectionless double-sided parallel-strip line bandpass filter with enhanced selectivity. IEEE Trans Circ Syst II Exp Briefs, 69(2):339-343.
Open peer comments: Debate/Discuss/Question/Opinion
<1>