Full Text:   <1402>

Summary:  <125>

CLC number: TP393

On-line Access: 2024-06-04

Received: 2023-01-05

Revision Accepted: 2024-06-04

Crosschecked: 2023-04-24

Cited: 0

Clicked: 1393

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Ke YU

https://orcid.org/0000-0002-1158-1483

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2024 Vol.25 No.5 P.701-712

http://doi.org/10.1631/FITEE.2300009


Combining graph neural network with deep reinforcement learning for resource allocation in computing force networks


Author(s):  Xueying HAN, Mingxi XIE, Ke YU, Xiaohong HUANG, Zongpeng DU, Huijuan YAO

Affiliation(s):  School of Computer Science, Beijing University of Posts and Telecommunications, Beijing 100876, China; more

Corresponding email(s):   hanxueying@bupt.edu.cn, yuke@bupt.edu.cn

Key Words:  Computing force network, Routing optimization, Deep learning, Graph neural network, Resource allocation


Xueying HAN, Mingxi XIE, Ke YU, Xiaohong HUANG, Zongpeng DU, Huijuan YAO. Combining graph neural network with deep reinforcement learning for resource allocation in computing force networks[J]. Frontiers of Information Technology & Electronic Engineering, 2024, 25(5): 701-712.

@article{title="Combining graph neural network with deep reinforcement learning for resource allocation in computing force networks",
author="Xueying HAN, Mingxi XIE, Ke YU, Xiaohong HUANG, Zongpeng DU, Huijuan YAO",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="25",
number="5",
pages="701-712",
year="2024",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2300009"
}

%0 Journal Article
%T Combining graph neural network with deep reinforcement learning for resource allocation in computing force networks
%A Xueying HAN
%A Mingxi XIE
%A Ke YU
%A Xiaohong HUANG
%A Zongpeng DU
%A Huijuan YAO
%J Frontiers of Information Technology & Electronic Engineering
%V 25
%N 5
%P 701-712
%@ 2095-9184
%D 2024
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2300009

TY - JOUR
T1 - Combining graph neural network with deep reinforcement learning for resource allocation in computing force networks
A1 - Xueying HAN
A1 - Mingxi XIE
A1 - Ke YU
A1 - Xiaohong HUANG
A1 - Zongpeng DU
A1 - Huijuan YAO
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 25
IS - 5
SP - 701
EP - 712
%@ 2095-9184
Y1 - 2024
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2300009


Abstract: 
Fueled by the explosive growth of ultra-low-latency and real-time applications with specific computing and network performance requirements, the computing force network (CFN) has become a hot research subject. The primary CFN challenge is to leverage network resources and computing resources. Although recent advances in deep reinforcement learning (DRL) have brought significant improvement in network optimization, these methods still suffer from topology changes and fail to generalize for those topologies not seen in training. This paper proposes a graph neural network (GNN) based DRL framework to accommodate network traffic and computing resources jointly and efficiently. By taking advantage of the generalization capability in GNN, the proposed method can operate over variable topologies and obtain higher performance than the other DRL methods.

图神经网络与深度强化学习结合的算力网络资源分配方法

韩雪莹1,谢明熹2,禹可2,黄小红1,杜宗鹏3,姚惠娟3
1北京邮电大学计算机学院(国家示范性软件学院),中国北京市,100876
2北京邮电大学人工智能学院,中国北京市,100876
3中国移动研究院基础网络技术研究所,中国北京市,100032
摘要:由于具有特定计算需求及超低延迟传输需求的实时应用呈现爆炸性增长,算力网络成为热门研究课题。当前算力网络的主要挑战是如何权衡网络资源与计算资源,作出联合最优决策。尽管近年来深度强化学习在网络优化方面取得一定进步,但这些方法仍然受到拓扑结构变化的影响,特别是对未在训练中出现的网络拓扑作出决策。本文提出一个基于图神经网络的深度强化学习框架,使得智能体在进行网络与计算资源联合优化的同时,兼具拓扑泛化性,更加适应网络拓扑的动态变化。借助图神经网络的泛化优势,该方法可在变动的网络拓扑中运行,且相比基于传统深度强化学习的方法具有更强的优化决策能力。

关键词:算力网络;路由优化;深度学习;图神经网络;资源分配

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Almasan P, Suárez-Varela J, Rusek K, et al., 2022. Deep reinforcement learning meets graph neural networks: exploring a routing optimization use case. https://arxiv.org/abs/1910.07421

[2]Badia-Sampera A, Suárez-Varela J, Almasan P, et al., 2019. Towards more realistic network models based on graph neural networks. Proc 15th Int Conf on Emerging Networking Experiments and Technologies, p.14-16.

[3]Barbarossa S, Sardellitti S, Lorenzo PD, 2014. Communicating while computing: distributed mobile cloud computing over 5G heterogeneous networks. IEEE Signal Process Mag, 31(6):45-55.

[4]China Mobile, Huawei Technologies, 2019. Technical White Paper on Computing-Aware Networking.

[5]Du ZP, Li ZQ, Duan XD, et al., 2022. Service information informing in computing aware networking. Proc Int Conf on Service Science, p.125-130.

[6]Ferriol-Galmés M, Suárez-Varela J, Barlet-Ros P, et al., 2020. Applying graph-based deep learning to realistic network scenarios. https://arxiv.org/abs/2010.06686

[7]Geyer F, 2017. Performance evaluation of network topologies using graph-based deep learning. Proc 11th EAI Int Conf on Performance Evaluation Methodologies and Tools, p.20-27.

[8]Gilmer J, Schoenholz SS, Riley PF, et al., 2017. Neural message passing for quantum chemistry. Proc 34 th Int Conf on Machine Learning, p.1263-1272.

[9]Guo SY, Dai Y, Xu SY, et al., 2020. Trusted cloud-edge network resource management: DRL-driven service function chain orchestration for IoT. IEEE Int Things J, 7(7):6010-6022.

[10]Kiani A, Ansari N, 2018. Edge computing aware NOMA for 5G networks. IEEE Int Things J, 5(2):1299-1306.

[11]Li M, Yang L, Yu FR, et al., 2019. Joint optimization of networking and computing resources for green M2M communications based on DRL. Proc IEEE Global Communications Conf, p.1-6.

[12]Liu B, Mao JW, Xu L, et al., 2021. CFN-dyncast: load balancing the edges via the network. Proc IEEE Wireless Communications and Networking Conf Workshops, p.1-6.

[13]Mao YY, You CS, Zhang J, et al., 2017. A survey on mobile edge computing: the communication perspective. IEEE Commun Surv Tutor, 19(4):2322-2358.

[14]Moreira R, Silva F, Frosi P, et al., 2018. A flexible network and compute-aware orchestrator to enhance QoS in NFV-based multimedia services. Proc IEEE 32nd Int Conf on Advanced Information Networking and Applications, p.512-519.

[15]Nordhaus WD, 2001. The Progress of Computing. Cowles Foundation Discussion Papers.

[16]Orlowski S, Wessäly R, Pióro M, et al., 2010. SNDlib 1.0—survivable network design library. Networks, 55(3):276-286.

[17]Ren YL, Chen XY, Guo S, et al., 2021. Blockchain-based VEC network trust management: a DRL algorithm for vehicular service offloading and migration. IEEE Trans Veh Technol, 70(8):8148-8160.

[18]Ruiz L, Gama F, Ribeiro A, 2021. Graph neural networks: architectures, stability, and transferability. Proc IEEE, 109(5):660-682.

[19]Rusek K, Suárez-Varela J, Mestres A, et al., 2019. Unveiling the potential of graph neural networks for network modeling and optimization in SDN. Proc ACM Symp on SDN Research, p.140-151.

[20]Suárez-Varela J, Carol-Bosch S, Rusek K, et al., 2019. Challenging the generalization capabilities of graph neural networks for network modeling. Proc ACM SIGCOMM Conf Posters and Demos, p.114-115.

[21]Sun PH, Lan JL, Li JF, et al., 2021. Combining deep reinforcement learning with graph neural networks for optimal VNF placement. IEEE Commun Lett, 25(1):176-180.

[22]Suzuki T, Yasuda Y, Nakamura R, et al., 2020. On estimating communication delays using graph convolutional networks with semi-supervised learning. Proc Int Conf on Information Networking, p.481-486.

[23]Tran TX, Hajisami A, Pandey P, et al., 2017. Collaborative mobile edge computing in 5G networks: new paradigms, scenarios, and challenges. IEEE Commun Mag, 55(4):54-61.

[24]Wang LN, Gu RT, Li ZK, et al., 2021. Computing-aware proactive IP-optical integrated network restructuring for edge computing. Proc 19 th Int Conf on Optical Communications and Networks, p.1-3.

[25]Wu ZH, Pan SR, Chen FW, et al., 2021. A comprehensive survey on graph neural networks. IEEE Trans Neur Netw Learn Syst, 32(1):4-24.

[26]Xie M, Yu K, Wu X, 2023. Adaptive routing of task in computing force network by integrating graph convolutional network and deep Q-network. Proc 8 th IEEE Int Conf on Network Intelligence and Digital Content, p.242-247.

[27]Xu ZY, Jian T, Meng JS, et al., 2018. Experience-driven networking: a deep reinforcement learning based approach. Proc IEEE Conf on Computer Communications, p.1871-1879.

[28]Yang BX, Chai WK, Xu ZC, et al., 2018. Cost-efficient NFV-enabled mobile edge-cloud for low latency mobile applications. IEEE Trans Netw Serv Manag, 15(1):475-488.

[29]Yao H, Duan X, Fu Y, 2022. Computing-aware routing protocol for computing force network. Int Conf on Service Science, p.137-141

[30]Yu S, Chen X, Zhou Z, et al., 2021. When deep reinforcement learning meets federated learning: intelligent multitimescale resource management for multiaccess edge computing in 5G ultradense network. IEEE Int Things J, 8(4):2238-2251.

[31]Zhang ZW, Cui P, Zhu WW, 2022. Deep learning on graphs: a survey. IEEE Trans Knowl Data Eng, 34(1):249-270.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE