Full Text:   <679>

Summary:  <252>

Suppl. Mater.: 

CLC number: TP13

On-line Access: 2024-02-23

Received: 2023-08-20

Revision Accepted: 2024-02-23

Crosschecked: 2023-10-17

Cited: 0

Clicked: 903

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Ying SUN

https://orcid.org/0000-0001-7494-2971

Jingyang MAO

https://orcid.org/0000-0002-8938-8376

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2024 Vol.25 No.2 P.250-259

http://doi.org/10.1631/FITEE.2300565


Recursive filtering ofmulti-rate cyber-physical systems with unknown inputs under adaptive event-triggered mechanisms


Author(s):  Ying SUN, Miaomiao FU, Jingyang MAO, Guoliang WEI

Affiliation(s):  Business School, University of Shanghai for Science and Technology, Shanghai 200093, China; more

Corresponding email(s):   jingyang_mao@sit.edu.cn

Key Words:  Cyber-physical systems, Multi-rate, Joint recursive filtering, Adaptive event-triggered mechanisms, Unknown inputs


Ying SUN, Miaomiao FU, Jingyang MAO, Guoliang WEI. Recursive filtering ofmulti-rate cyber-physical systems with unknown inputs under adaptive event-triggered mechanisms[J]. Frontiers of Information Technology & Electronic Engineering, 2024, 25(2): 250-259.

@article{title="Recursive filtering ofmulti-rate cyber-physical systems with unknown inputs under adaptive event-triggered mechanisms",
author="Ying SUN, Miaomiao FU, Jingyang MAO, Guoliang WEI",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="25",
number="2",
pages="250-259",
year="2024",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2300565"
}

%0 Journal Article
%T Recursive filtering ofmulti-rate cyber-physical systems with unknown inputs under adaptive event-triggered mechanisms
%A Ying SUN
%A Miaomiao FU
%A Jingyang MAO
%A Guoliang WEI
%J Frontiers of Information Technology & Electronic Engineering
%V 25
%N 2
%P 250-259
%@ 2095-9184
%D 2024
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2300565

TY - JOUR
T1 - Recursive filtering ofmulti-rate cyber-physical systems with unknown inputs under adaptive event-triggered mechanisms
A1 - Ying SUN
A1 - Miaomiao FU
A1 - Jingyang MAO
A1 - Guoliang WEI
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 25
IS - 2
SP - 250
EP - 259
%@ 2095-9184
Y1 - 2024
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2300565


Abstract: 
cyber-physical systems (CPSs) take on the characteristics of both multiple rates of information collection and processing and the dependency on information exchanges. The purpose of this paper is to develop a joint recursive filtering scheme that estimates both unknown inputs and system states for multi-rate CPSs with unknown inputs. In cyberspace, the information transmission between the local joint filter and the sensors is governed by an adaptive event-triggered strategy. Furthermore, the desired parameters of joint filters are determined by a set of algebraic matrix equations in a recursive way, and a sufficient condition verifying the boundedness of filtering error covariance is found by resorting to some algebraic operation. A state fusion estimation scheme that uses local state estimation is proposed based on the covariance intersection (CI) based fusion conception. Lastly, an illustrative example demonstrates the effectiveness of the proposed adaptive event-triggered recursive filtering algorithm.

自适应事件触发机制下带有未知输入的多速率信息物理系统的递归滤波

孙颖1,4,扶苗苗2,毛靖阳3,魏国亮1
1上海理工大学管理学院,中国上海市,200093
2上海市曹杨职业技术学校,中国上海市,200333
3上海应用技术大学电气与电子工程学院,中国上海市,201418
4上海理工大学智慧应急管理学院,中国上海市,200093
摘要:信息物理系统具有多速率的信息收集和处理功能,并且对信息交换具有依赖性。本文旨在设计一种联合递归滤波方案,用于估计具有未知输入的多速率信息物理系统的输入和系统状态,其中联合递归滤波器和传感器之间的信息传输受自适应事件触发策略控制。通过求解一组代数矩阵方程,可以递归地确定满足要求的联合滤波器增益,并且可以通过一些代数运算获得保证滤波误差协方差有界的充分条件。基于协方差交叉融合的概念,提出一种利用局部状态估计的融合估计方案。最后,通过一个数值仿真验证了所提自适应事件触发递归滤波算法的有效性。

关键词:信息物理系统;多速率;联合递归滤波;自适应事件触发机制;未知输入

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]An WJ, Zhao PF, Liu HJ, et al., 2022. Distributed multi-step subgradient projection algorithm with adaptive eventtriggering protocols: a framework of multiagent systems. Int J Syst Sci, 53(13):2758-2772.

[2]Boyd S, EI Ghaoui L, Feron E, 1994. Linear Matrix Inequalities in System and Control Theory. SIAM, Philadelphia, USA.

[3]Chen W, Ding DR, Dong HL, et al., 2019. Distributed resilient filtering for power systems subject to denialof-service attacks. IEEE Trans Syst Man Cybern Syst, 49(8):1688-1697.

[4]Chen WB, Li JC, Shi HB, et al., 2022. An adaptive multisensor visual attention model. Neur Comput Appl, 34(9):7241-7252.

[5]Darouach M, Zasadzinski M, 1997. Unbiased minimum variance estimation for systems with unknown exogenous inputs. Automatica, 33(4):717-719.

[6]Deng ZL, Zhang P, Qi WJ, 2013. The accuracy comparison of multi-sensor covariance intersection fuser and three weighting fusers. Inform Fus, 14(2):177-185.

[7]Friedland B, 1969. Treatment of bias in recursive filtering. IEEE Trans Autom Contr, 14(4):359-367.

[8]Ge XH, Han QL, Wang ZD, 2019. A threshold-parameterdependent approach to designing distributed eventtriggered H consensus filters over sensor networks. IEEE Trans Cybern, 49(4):1148-1159.

[9]Ge XH, Xiao SY, Han QL, et al., 2022. Dynamic eventtriggered scheduling and platooning control co-design for automated vehicles over vehicular ad-hoc networks. IEEE/CAA J Autom Sin, 9(1):31-46.

[10]Ge XH, Han QL, Wu Q, et al., 2023. Resilient and safe platooning control of connected automated vehicles against intermittent denial-of-service attacks. IEEE/CAA J Autom Sin, 10(5):1234-1251.

[11]Girard A, 2015. Dynamic triggering mechanisms for event-triggered control. IEEE Trans Autom Contr, 60(7):1992-1997.

[12]Glentis GO, 2008. A fast algorithm for APES and Capon spectral estimation. IEEE Trans Signal Process, 56(9):4207-4220.

[13]Gravina R, Alinia P, Ghasemzadeh H, et al., 2017. Multisensor fusion in body sensor networks: state-of-the-art and research challenges. Inform Fus, 35:68-80.

[14]Gungor VC, Lu B, Hancke GP, 2010. Opportunities and challenges of wireless sensor networks in smart grid. IEEE Trans Ind Electron, 57(10):3557-3564.

[15]Han F, Lao XL, Li JH, et al., 2022a. Dynamic eventtriggered protocol-based distributed secondary control for islanded microgrids. Int J Electr Power Energy Syst, 137:107723.

[16]Han F, Wang ZD, Dong HL, et al., 2022b. A local approach to distributed H-consensus state estimation over sensor networks under hybrid attacks: dynamic event-triggered scheme. IEEE Trans Signal Inform Process Netw, 8:556-570.

[17]Hu ZY, Qiao YJ, Li XY, et al., 2022. Design and experimental validation of event-triggered multi-vehicle cooperation in conflicting scenarios. Front Inform Technol Electron Eng, 23(11):1700-1713.

[18]Ju YM, Ding DR, He X, et al., 2022. Consensus control of multi-agent systems using fault-estimation-in-the-loop: dynamic event-triggered case. IEEE/CAA J Autom Sin, 9(8):1440-1451.

[19]Kitanidis PK, 1987. Unbiased minimum-variance linear state estimation. Automatica, 23(6):775-778.

[20]Kumar P, Shrivastava PC, Tiwari M, et al., 2019. Highthroughput, area-efficient architecture of 2-D block FIR filter using distributed arithmetic algorithm. Circ Syst Signal Process, 38(3):1099-1113.

[21]Liu S, Wang ZD, Wang LC, et al., 2018. On quantized H filtering for multi-rate systems under stochastic communication protocols: the finite-horizon case. Inform Sci, 459:211-223.

[22]Liu ZQ, Luo XY, Jia JJ, 2022. Event-triggered dynamic output-feedback control for a class of Lipschitz nonlinear systems. Front Inform Technol Electron Eng, 23(11):1684-1699.

[23]Ning BD, Han QL, Zuo ZY, et al., 2023. Fixed-time and prescribed-time consensus control of multi-agent systems and its applications: a survey of recent trends and methodologies. IEEE Trans Ind Inform, 19(2):1121-1135.

[24]Shakiba FM, Shojaee M, Azizi SM, et al., 2022. Real-time sensing and fault diagnosis for transmission lines. Int J Netw Dynam Intell, 1(1):36-47.

[25]Sheng ZG, Tian DX, Leung VCM, et al., 2018. Delay analysis and time-critical protocol design for in-vehicle power line communication systems. IEEE Trans Veh Technol, 67(1):3-16.

[26]Song HF, Ding DR, Dong HL, et al., 2022. Distributed filtering based on Cauchy-kernel-based maximum correntropy subject to randomly occurring cyber-attacks. Automatica, 135:110004.

[27]Song WH, Wang JA, Zhao SY, 2019. Event-triggered cooperative unscented Kalman filtering and its application in multi-UAV systems. Automatica, 105:264-273.

[28]Su YF, Cai H, Huang J, 2022. The cooperative output regulation by the distributed observer approach. Int J Netw Dynam Intell, 1(1):20-35.

[29]Sun YN, Zou WC, Guo J, et al., 2021. Containment control for heterogeneous nonlinear multi-agent systems under distributed event-triggered schemes. Front Inform Technol Electron Eng, 22(1):107-119.

[30]Tan HL, Shen B, Liu YR, et al., 2017. Eventtriggered multi-rate fusion estimation for uncertain system with stochastic nonlinearities and colored measurement noises. Inform Fus, 36:313-320.

[31]Tian EG, Wang ZD, Zou L, et al., 2019. Probabilisticconstrained filtering for a class of nonlinear systems with improved static event-triggered communication. Int J Robust Nonl, 29(5):1484-1498.

[32]Wang AJ, Dong T, Liao XF, 2016. Event-triggered synchronization strategy for complex dynamical networks with the Markovian switching topologies. Neur Netw, 74:52-57.

[33]Xie ML, Ding DR, Ge XH, et al., 2022. Distributed platooning control of automated vehicles subject to replay attacks based on proportional integral observers. IEEE/CAA J Autom Sin, early access.

[34]Xie XP, Wei C, Gu Z, et al., 2022. Relaxed resilient fuzzy stabilization of discrete-time Takagi–Sugeno systems via a higher order time-variant balanced matrix method. IEEE Trans Fuzzy Syst, 30(11):5044-5050.

[35]Xing ML, Deng FQ, Li PS, et al., 2021. Event-triggered tracking control for multi-agent systems with measurement noises. Int J Syst Sci, 52(10):1974-1986.

[36]Yang ZW, Liu YR, Zhang WB, et al., 2022. Differentially private containment control for multi-agent systems. Int J Syst Sci, 53(13):2814-2831.

[37]Yong SZ, Zhu MH, Frazzoli E, 2016. A unified filter for simultaneous input and state estimation of linear discretetime stochastic systems. Automatica, 63:321-329.

[38]You SH, Ahn CK, Zhao SY, et al., 2022. Frobenius normbased unbiased finite impulse response fusion filtering for wireless sensor networks. IEEE Trans Ind Electron, 69(2):1867-1876.

[39]Zhang H, Wang ZP, Yan HC, et al., 2019. Adaptive event-triggered transmission scheme and H filtering co-design over a filtering network with switching topology. IEEE Trans Cybern, 49(12):4296-4307.

[40]Zhang XM, Han QL, Ge XH, et al., 2023. Sampled-data control systems with non-uniform sampling: a survey of methods and trends. Ann Rev Contr, 55:70-91.

[41]Zhao XX, Liu S, 2022. Distributed recursive filtering for multi-rate nonlinear systems under the Round-Robin scheduling. Nonl Dynam, 107(1):939-952.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE