Full Text:   <721>

Suppl. Mater.: 

CLC number: TP309

On-line Access: 2025-04-03

Received: 2023-11-07

Revision Accepted: 2024-04-08

Crosschecked: 2025-04-07

Cited: 0

Clicked: 1373

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Qiumei XIAO

https://orcid.org/0009-0004-8924-5799

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2025 Vol.26 No.3 P.427-440

http://doi.org/10.1631/FITEE.2300755


A geographic information encryption system based on Chaos-LSTM and chaos sequence proliferation


Author(s):  Jia DUAN, Luanyun HU, Qiumei XIAO, Meiting LIU, Wenxin YU

Affiliation(s):  Third Surveying and Mapping Institute of Hunan Province, Changsha 410000, China; more

Corresponding email(s):   1959582421@qq.com

Key Words:  Chaos, Long short-term memory (LSTM), Chaos sequence proliferation (CSP), ZYNQ platform, Image encryption


Jia DUAN, Luanyun HU, Qiumei XIAO, Meiting LIU, Wenxin YU. A geographic information encryption system based on Chaos-LSTM and chaos sequence proliferation[J]. Frontiers of Information Technology & Electronic Engineering, 2025, 26(3): 427-440.

@article{title="A geographic information encryption system based on Chaos-LSTM and chaos sequence proliferation",
author="Jia DUAN, Luanyun HU, Qiumei XIAO, Meiting LIU, Wenxin YU",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="26",
number="3",
pages="427-440",
year="2025",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2300755"
}

%0 Journal Article
%T A geographic information encryption system based on Chaos-LSTM and chaos sequence proliferation
%A Jia DUAN
%A Luanyun HU
%A Qiumei XIAO
%A Meiting LIU
%A Wenxin YU
%J Frontiers of Information Technology & Electronic Engineering
%V 26
%N 3
%P 427-440
%@ 2095-9184
%D 2025
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2300755

TY - JOUR
T1 - A geographic information encryption system based on Chaos-LSTM and chaos sequence proliferation
A1 - Jia DUAN
A1 - Luanyun HU
A1 - Qiumei XIAO
A1 - Meiting LIU
A1 - Wenxin YU
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 26
IS - 3
SP - 427
EP - 440
%@ 2095-9184
Y1 - 2025
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2300755


Abstract: 
In response to the strong correlation between the chaotic system state and initial state and parameters in traditional chaotic encryption algorithms, which may lead to periodicity in chaotic sequences, the chaos long short-term memory (chaos-LSTM) model is constructed by combining chaotic systems with LSTM neural networks. The chaos sequence proliferation (CSP) algorithm is constructed to address the problem that the limited computational accuracy of computers can lead to periodicity in long chaotic sequences, making them unsuitable for encrypting objects with large amounts of data. By combining the chaos-LSTM model and CSP algorithm, a geographic information encryption system is proposed. First, the chaos-LSTM model is used to output chaotic sequences with high spectral entropy (SE) complexity. Then, a shorter chaotic sequence is selected and proliferated using the CSP algorithm to generate chaotic proliferation sequences that match the encrypted object; a randomness analysis is conducted and testing is performed on it. Finally, using geographic images as encryption objects, the chaotic proliferation sequence, along with the scrambling and diffusion algorithms, are combined to form the encryption system, which is implemented on the ZYNQ platform. The system’s excellent confidentiality performance and scalability are proved by software testing and hardware experiments, making it suitable for the confidentiality peers of various encryption objects with outstanding application value.

基于Chaos-LSTM与混沌序列增殖的地理信息数据加密系统

段佳1,2,胡娈运1,2,肖求美3,刘美婷3,于文新3
1湖南省第三测绘院,中国长沙市,410000
2湖南省地理信息安全与应用工程研究中心,中国长沙市,410000
3湖南科技大学信息与电气工程学院,中国湘潭市,411201
摘要:针对传统混沌加密算法中混沌系统状态与初始状态及参数关联性强,可能导致混沌序列存在周期性的问题,结合混沌系统和LSTM神经网络构建了Chaos-LSTM模型。针对计算机的有限计算精度效应会使长混沌序列出现周期性,使其不适宜对数据量大的对象进行加密的问题,构建了混沌序列增殖(CSP)算法。结合二者,提出了基于Chaos-LSTM与混沌序列增殖的地理信息数据加密通信系统。首先,通过Chaos-LSTM模型输出具有较高谱熵(SE)复杂度的混沌序列;然后,选取较短的混沌序列,通过CSP算法增殖出匹配加密对象的混沌加密序列,并对增殖序列进行随机性分析与测试;最后,以地理图片信息为加密对象,将混沌增殖序列与扩散算法以及置乱算法结合构成加密算法,并将加密系统在ZYNQ平台中实现。软件测试与硬件实验表明该系统具有良好的保密性能与可拓展性,能用于多种加密对象的保密通信,具备良好的应用价值。

关键词:混沌;长短期记忆神经网络(LSTM);混沌序列增殖(CSP);ZYNQ平台;图像加密

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Alexan W, Elkandoz M, Mashaly M, et al., 2023. Color image encryption through chaos and KAA map. IEEE Access, 11:11541-11554.

[2]Cao Y, Zhao YL, Wang Q, et al., 2022. The evolution of quantum key distribution networks: on the road to the Qinternet. IEEE Commun Surv Tutor, 24(2):839-894.

[3]Chen X, Qian S, Yu F, et al., 2020. Pseudorandom number generator based on three kinds of four-wing memristive hyperchaotic system and its application in image encryption. Complexity, 2020:8274685.

[4]De la Fraga LG, Mancillas-López C, Tlelo-Cuautle E, 2021. Designing an authenticated Hash function with a 2D chaotic map. Nonl Dyn, 104(4):4569-4580.

[5]De la Fraga LG, Ovilla-Martínez B, Tlelo-Cuautle E, 2023. Echo state network implementation for chaotic time series prediction. Microprocess Microsyst, 103:104950.

[6]Gabr M, Korayem Y, Chen YL, et al., 2023. R3—rescale, rotate, and randomize: a novel image cryptosystem utilizing chaotic and hyper-chaotic systems. IEEE Access, 11:119284-119312.

[7]Gonzalez-Zapata AM, De la Fraga LG, Ovilla-Martinez B, et al., 2023. Enhanced FPGA implementation of echo state networks for chaotic time series prediction. Integration, 92:48-57.

[8]Hosseinzadeh R, Zarebnia M, Parvaz R, 2019. Hybrid image encryption algorithm based on 3D chaotic system and choquet fuzzy integral. Opt Laser Technol, 120:105698.

[9]Irfan M, Ali A, Khan MA, et al., 2020. Pseudorandom number generator (PRNG) design using hyper-chaotic modified robust logistic map (HC-MRLM). Electronics, 9(1):104.

[10]Jia YQ, Shelhamer E, Donahue J, et al., 2014. Caffe: convolutional architecture for fast feature embedding. Proc 22nd ACM Int Conf on Multimedia, p.675-678.

[11]Lin HR, Wang CH, Cui L, et al., 2022. Hyperchaotic memristive ring neural network and application in medical image encryption. Nonl Dyn, 110(1):841-855.

[12]Liu XC, Mou J, Zhang YS, et al., 2024. A new hyperchaotic map based on discrete memristor and meminductor: dynamics analysis, encryption application, and DSP implementation. IEEE Trans Ind Electron, 71(5):5094-5104.

[13]Lorenz EN, 1963. Deterministic nonperiodic flow. J Atmos Sci, 20(2):130-141.

[14]Man ZL, Li JQ, Di XQ, et al., 2021. Double image encryption algorithm based on neural network and chaos. Chaos Sol Fract, 152:111318.

[15]Martins P, Sousa L, Mariano A, 2017. A survey on fully homomorphic encryption: an engineering perspective. ACM Comput Surv, 50(6):83.

[16]Murillo-Escobar MA, Meranza-Castillón MO, López-Gutiérrez RM, et al., 2019. Suggested integral analysis for chaos-based image cryptosystems. Entropy, 21(8):815.

[17]Murillo-Escobar MA, Cruz-Hernández C, Cardoza-Avendaño L, et al., 2022. Multibiosignal chaotic encryption scheme based on spread spectrum and global diffusion process for e-health. Biomed Signal Process Contr, 78:104001.

[18]Pareschi F, Rovatti R, Setti G, 2012. On statistical tests for randomness included in the NIST SP800-22 test suite and based on the binomial distribution. IEEE Trans Inform Forens Secur, 7(2):491-505.

[19]Rehman AU, Liao XF, Ashraf R, et al., 2018. A color image encryption technique using exclusive-OR with DNA complementary rules based on chaos theory and SHA-2. Optik, 159:348-367.

[20]Sahu HK, Jadhav V, Sonavane S, et al., 2016. Cryptanalytic attacks on international data encryption algorithm block cipher. Defence Sci J, 66(6):582-589.

[21]Teh JS, Alawida M, Sii YC, 2020. Implementation and practical problems of chaos-based cryptography revisited. J Inform Secur Appl, 50:102421.

[22]Tezcan C, 2022. Key lengths revisited: GPU-based brute force cryptanalysis of DES, 3DES, and PRESENT. J Syst Archit, 124:102402.

[23]Tlelo-Cuautle E, Díaz-Muñoz JD, González-Zapata AM, et al., 2020. Chaotic image encryption using Hopfield and Hindmarsh–Rose neurons implemented on FPGA. Sensors, 20(5):1326.

[24]Ullah S, Zheng JB, Din N, et al., 2023. Elliptic curve cryptography; applications, challenges, recent advances, and future trends: a comprehensive survey. Comput Sci Rev, 47:100530.

[25]Wan YJ, Gu SQ, Du BX, 2020. A new image encryption algorithm based on composite chaos and hyperchaos combined with DNA coding. Entropy, 22(2):171.

[26]Wu XJ, Kan HB, Kurths J, 2015. A new color image encryption scheme based on DNA sequences and multiple improved 1D chaotic maps. Appl Soft Comput, 37:24-39.

[27]Wu XJ, Wang DW, Kurths J, et al., 2016. A novel lossless color image encryption scheme using 2D DWT and 6D hyperchaotic system. Inform Sci, 349-350:137-153.

[28]Xiong PY, Jahanshahi H, Alcaraz R, et al., 2021. Spectral entropy analysis and synchronization of a multi-stable fractional-order chaotic system using a novel neural network-based chattering-free sliding mode technique. Chaos Sol Fract, 144:110576.

[29]Xu SC, Wang XY, Ye XL, 2022. A new fractional-order chaos system of Hopfield neural network and its application in image encryption. Chaos Sol Fract, 157:111889.

[30]Yan S, Gu Z, Park JH, et al., 2023. Synchronization of delayed fuzzy neural networks with probabilistic communication delay and its application to image encryption. IEEE Trans Fuzzy Syst, 31(3):930-940.

[31]Yu F, Zhang ZN, Shen H, et al., 2022. FPGA implementation and image encryption application of a new PRNG based on a memristive Hopfield neural network with a special activation gradient. Chin Phys B, 31(2):020505.

[32]Yu Y, Si XS, Hu CH, et al., 2019. A review of recurrent neural networks: LSTM cells and network architectures. Neur Comput, 31(7):1235-1270.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE