CLC number: TN722
On-line Access: 2024-12-26
Received: 2024-03-23
Revision Accepted: 2024-12-26
Crosschecked: 2024-05-30
Cited: 0
Clicked: 805
Citations: Bibtex RefMan EndNote GB/T7714
Cheng BI, Haotian LI, Shuai WANG, Zhijiang DAI, Jingzhou PANG, Ruibin GAO, Kang ZHONG, Jingsong WANG. Broadband and asymmetrical Doherty based on circuit parameter solution space[J]. Frontiers of Information Technology & Electronic Engineering, 2024, 25(11): 1552-1564.
@article{title="Broadband and asymmetrical Doherty based on circuit parameter solution space",
author="Cheng BI, Haotian LI, Shuai WANG, Zhijiang DAI, Jingzhou PANG, Ruibin GAO, Kang ZHONG, Jingsong WANG",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="25",
number="11",
pages="1552-1564",
year="2024",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2400226"
}
%0 Journal Article
%T Broadband and asymmetrical Doherty based on circuit parameter solution space
%A Cheng BI
%A Haotian LI
%A Shuai WANG
%A Zhijiang DAI
%A Jingzhou PANG
%A Ruibin GAO
%A Kang ZHONG
%A Jingsong WANG
%J Frontiers of Information Technology & Electronic Engineering
%V 25
%N 11
%P 1552-1564
%@ 2095-9184
%D 2024
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2400226
TY - JOUR
T1 - Broadband and asymmetrical Doherty based on circuit parameter solution space
A1 - Cheng BI
A1 - Haotian LI
A1 - Shuai WANG
A1 - Zhijiang DAI
A1 - Jingzhou PANG
A1 - Ruibin GAO
A1 - Kang ZHONG
A1 - Jingsong WANG
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 25
IS - 11
SP - 1552
EP - 1564
%@ 2095-9184
Y1 - 2024
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2400226
Abstract: The input impedance of the post-matching network (PMN) is configured as a complex value. The parameter solution space is determined based on the fundamental principles of the doherty power amplifier (DPA), enabling the DPA to achieve high efficiency at the output power back-off (OBO). The parameter solution space comprises three variables: the phase parameter of the output matching network for the carrier power amplifier (carrier PA), the phase parameter of the output matching network for the peaking power amplifier (peaking PA), and the input impedance of PMN. These parameters are optimized to enable the DPA to achieve high efficiency at the OBO. In this paper, a one-to-one mapping relationship is established between the frequency and the parameter solution space, allowing for a precise optimization of the DPA across a broad frequency range. Leveraging this mapping relationship, an asymmetric DPA designed to operate over the 1.8–2.6 GHz frequency band is designed and fabricated, demonstrating the feasibility and effectiveness of the proposed approach. Under continuous wave excitation, the test results show that the drain efficiency (DE) is 42.7%–56.4% at 9.5 dB OBO and the saturated DE is 45.8%–71.1%. The saturated output power of this DPA is 46.9–48.8 dBm with a gain of 5.5–8.0 dB at saturation. A 20-MHz long-term-evolution modulated signal with a peak-to-average power ratio of 8 dB is also applied to the fabricated DPA at 1.8, 2.1, and 2.6 GHz. Under these conditions, at 8 dB OBO, the DPA shows an adjacent channel power ratio always lower than 48 dBc after digital pre-distortion linearization.
[1]Bachi J, Serhan A, Pham DKG, et al., 2022. A novel approach for Doherty PA design using a compact L-C combiner. IEEE Trans Circ Syst II Express Briefs, 69(10):4023-4027.
[2]Cavarroc M, Lamy A, Lembeye O, et al., 2023. Compact 40% fractional bandwidth Doherty PA with input group delay engineering. IEEE Microw Wirel Technol Lett, 33(6):851-854.
[3]Chen WJ, Wu YL, Li SB, et al., 2023. Fully-integrated broadband GaAs MMIC load modulated balanced amplifier for sub-6 GHz applications. IEEE Trans Circ Syst II Express Briefs, 70(8):2834-2838.
[4]Choi W, Kang H, Oh H, et al., 2021. Doherty power amplifier based on asymmetric cells with complex combining load. IEEE Trans Microw Theory Tech, 69(4):2336-2344.
[5]Cui J, Li PP, Sheng WX, 2023. High linearity U-band power amplifier design: a novel intermodulation point analysis method. Front Inform Technol Electron Eng, 24(1):176-186.
[6]Doherty WH, 1936. A new high efficiency power amplifier for modulated waves. Proc Inst Radio Eng, 24(9):1163-1182.
[7]Fang XH, Cheng KKM, 2014. Extension of high-efficiency range of Doherty amplifier by using complex combining load. IEEE Trans Microw Theory Tech, 62(9):2038-2047.
[8]Frickey DA, 1994. Conversions between S, Z, Y, H, ABCD, and T parameters which are valid for complex source and load impedances. IEEE Trans Microw Theory Tech, 42(2):205-211.
[9]Hallberg W, Özen M, Gustafsson D, et al., 2016. A Doherty power amplifier design method for improved efficiency and linearity. IEEE Trans Microw Theory Tech, 64(12):4491-4504.
[10]Li C, You F, Peng J, et al., 2020. Co-design of matching sub-networks to realize broadband symmetrical Doherty with configurable back-off region. IEEE Trans Circ Syst II Express Briefs, 67(10):1730-1734.
[11]Li M, Pang JZ, Li Y, et al., 2019. Ultra-wideband dual-mode Doherty power amplifier using reciprocal gate bias for 5G applications. IEEE Trans Microw Theory Tech, 67(10):4246-4259.
[12]Li M, Li ZQ, Zheng Q, et al., 2022. A 17–26.5 GHz 42.5 dBm broadband and highly efficient gallium nitride power amplifier design. Front Inform Technol Electron Eng, 23(2):346-350.
[13]Li MY, Cheng XB, Dai ZJ, et al., 2023. A novel method for extending the output power back-off range of an asymmetrical Doherty power amplifier. Front Inform Technol Electron Eng, 24(3):470-479.
[14]Li SS, Huang MY, Jung D, et al., 2021. A mm-wave current-mode inverse outphasing transmitter front-end: a circuit duality of conventional voltage-mode outphasing. IEEE J Sol-State Circ, 56(6):1732-1744.
[15]Pang JZ, He SB, Dai ZJ, et al., 2016. Design of a post-matching asymmetric Doherty power amplifier for broadband applications. IEEE Microw Wirel Compon Lett, 26(1):52-54.
[16]Rouhani S, Ghanaatian A, Abrishamifar A, et al., 2020. A wideband quasi-asymmetric Doherty power amplifier with a two-section matching-phase difference compensator network design using GaAs technology. Analog Integr Circ Signal Process, 105(3):359-370.
[17]Shi WM, He SB, You F, et al., 2017. The influence of the output impedances of peaking power amplifier on broadband Doherty amplifiers. IEEE Trans Microw Theory Tech, 65(8):3002-3013.
[18]Shi WM, He SB, Zhu XY, et al., 2018. Broadband continuous-mode Doherty power amplifiers with noninfinity peaking impedance. IEEE Trans Microw Theory Tech, 66(2):1034-1046.
[19]Son J, Kim I, Moon J, et al., 2011. A highly efficient asymmetric Doherty power amplifier with a new output combining circuit. IEEE Int Conf on Microwaves, Communications, Antennas and Electronic Systems, p.1-4.
[20]Wright P, Lees J, Benedikt J, et al., 2009. A methodology for realizing high efficiency class-J in a linear and broadband PA. IEEE Trans Microw Theory Tech, 57(12):3196-3204.
[21]Xu Y, Pang JZ, Wang XY, et al., 2021. Enhancing bandwidth and back-off range of Doherty power amplifier with modified load modulation network. IEEE Trans Microw Theory Tech, 69(4):2291-2303.
[22]Yang ZX, Yao Y, Li MY, et al., 2019. Bandwidth extension of Doherty power amplifier using complex combining load with noninfinity peaking impedance. IEEE Trans Microw Theory Tech, 67(2):765-777.
[23]Zhang JR, Zheng SY, Yang N, 2023. An efficient broadband symmetrical Doherty power amplifier with extended back-off range. IEEE Trans Circ Syst II Express Briefs, 70(4):1316-1320.
[24]Zhang XH, Li SS, Huang DQ, et al., 2023. A millimeter-wave three-way Doherty power amplifier for 5G NR OFDM. IEEE J Sol-State Circ, 58(5):1256-1270.
[25]Zhou XY, Chan WS, Sharma T, et al., 2022. A Doherty power amplifier with extended high-efficiency range using three-port harmonic injection network. IEEE Trans Circ Syst I Regul Pap, 69(7):2756-2766.
Open peer comments: Debate/Discuss/Question/Opinion
<1>