CLC number: O344.3
On-line Access:
Received: 2000-02-18
Revision Accepted: 2000-06-18
Crosschecked: 0000-00-00
Cited: 0
Clicked: 4419
WANG Xiao-gui, XU Jin-quan. EDGE SINGULARITY OF BONDED PIEZOELECTRIC MATERIALS WITH REPEATED EIGENVALUES[J]. Journal of Zhejiang University Science A, 2001, 2(2): 157-160.
@article{title="EDGE SINGULARITY OF BONDED PIEZOELECTRIC MATERIALS WITH REPEATED EIGENVALUES",
author="WANG Xiao-gui, XU Jin-quan",
journal="Journal of Zhejiang University Science A",
volume="2",
number="2",
pages="157-160",
year="2001",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2001.0157"
}
%0 Journal Article
%T EDGE SINGULARITY OF BONDED PIEZOELECTRIC MATERIALS WITH REPEATED EIGENVALUES
%A WANG Xiao-gui
%A XU Jin-quan
%J Journal of Zhejiang University SCIENCE A
%V 2
%N 2
%P 157-160
%@ 1869-1951
%D 2001
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2001.0157
TY - JOUR
T1 - EDGE SINGULARITY OF BONDED PIEZOELECTRIC MATERIALS WITH REPEATED EIGENVALUES
A1 - WANG Xiao-gui
A1 - XU Jin-quan
J0 - Journal of Zhejiang University Science A
VL - 2
IS - 2
SP - 157
EP - 160
%@ 1869-1951
Y1 - 2001
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2001.0157
Abstract: In piezoelectric problems, the form of the general solution is dependent on the eigenvalues of the material. The singular stress field and electrical displacement field near the interface edge were deduced in this study. The results showed that the stress field and the electrical displacement field have the same singularity; and that the singularity depends not only on the mechanical properties and shape of the interface edge, but also on the piezoelectric properties of the composite material.
[1] Beom, H. G., Atluri, S. N., 1996. Near-tip fields and intensity factors for interfacial cracks in dissimilar anisotropic piezoelectric media. International Journal of Fracture, 75: 163.
[2] Ding, H. J., Chen, B., Liang, J., 1996. General solutions for coupled equations for piezoelectric media. International Journal of Solids Structures, 33(16):2283.
[3] Liu, Y. H., Xu, J. Q., Ding, H. J., 1999. An axisymmetric interface edge of bonded transversely isotropic piezoelectric materials under torsion. Journal of Applied Mechanics, 66: 821.
[4] Parton, V. Z., 1976. Fracture mechanics of piezoelectric materials. Acta Astronautica, 3: 671.
[5] Sosa, H. A., Pak, Y. E., 1990. Three-dimensional eigenfunction analysis of a crack in a piezoelectric material. International Journal of Solids Structures, 26: 1.
[6] Suo, Z., Kuo, C. M., Barnett, D. M., et al., 1992. Fracture mechanics for piezoelectric ceramics. J. Mech. Phys. Solids, 40(4): 739.
Open peer comments: Debate/Discuss/Question/Opinion
<1>