CLC number: O241.4
On-line Access:
Received:
Revision Accepted:
Crosschecked: 0000-00-00
Cited: 0
Clicked: 4123
YANG Shi-jun. Gauss-Radau and Gauss-Lobatto formulae for the Jacobi weight and Gori-Micchelli weight functions[J]. Journal of Zhejiang University Science A, 2002, 3(4): 455-460.
@article{title="Gauss-Radau and Gauss-Lobatto formulae for the Jacobi weight and Gori-Micchelli weight functions",
author="YANG Shi-jun",
journal="Journal of Zhejiang University Science A",
volume="3",
number="4",
pages="455-460",
year="2002",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2002.0455"
}
%0 Journal Article
%T Gauss-Radau and Gauss-Lobatto formulae for the Jacobi weight and Gori-Micchelli weight functions
%A YANG Shi-jun
%J Journal of Zhejiang University SCIENCE A
%V 3
%N 4
%P 455-460
%@ 1869-1951
%D 2002
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2002.0455
TY - JOUR
T1 - Gauss-Radau and Gauss-Lobatto formulae for the Jacobi weight and Gori-Micchelli weight functions
A1 - YANG Shi-jun
J0 - Journal of Zhejiang University Science A
VL - 3
IS - 4
SP - 455
EP - 460
%@ 1869-1951
Y1 - 2002
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2002.0455
Abstract: The main purpose of this work is to find for any non-negative measure, the relations between the Gauss-Radau and gauss-Lobatto formula and Gauss formulae for the same measure. As applications, the author obtained the explicit Gauss-Radau and gauss-Lobatto formulae for the Jacobi weight and the gori-Micchelli weight.
[1] Davis, P.J.,Rabinowitz, P. 1975, Methods of Numerical Integration, Academic Press, New York.
[2] Gautschi,W., 2000a, Gauss-Radau formulae for Jacobi and Laguerre weight functions. Math. and Comput.in Simulation, 54:403-412.
[3] Gautschi,W., 2000b, High-order Gauss-Lobatto formulae, Electr. Trans. Numer. Algorithms, 25: 213-222.
[4] Gori,L.,Miccheli,C.A.,1996. On weight functions which admit explicit Gauss-Turan quadrature formulas. Math. Computation, 65:1567-1581.
[5] Golub, G.H.,1973, Some modified matrix eigenvalue problems. SIAM Rev. 15: 318-334.
[6] Szegó,G.,1959. Orthogonal Polynomials, New York.
[7] Yang,S.J., Wang,X.H.,2002. Fourier-Chebyshev coefficients and Gauss-Turán quadrature with Chebyshev weight. Journal of Computational Mathematics (accepted).
Open peer comments: Debate/Discuss/Question/Opinion
<1>