Full Text:   <2933>

CLC number: TN919.8

On-line Access: 

Received: 2005-12-02

Revision Accepted: 2006-02-17

Crosschecked: 0000-00-00

Cited: 2

Clicked: 5553

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
1. Reference List
Open peer comments

Journal of Zhejiang University SCIENCE A 2006 Vol.7 No.5 P.847-856

http://doi.org/10.1631/jzus.2006.A0847


Video quality based link adaptation for low latency video transmission over WLANs


Author(s):  Ferré, Pierre, Doufexi Angela, Chung-how James, Nix Andrew, Bull David

Affiliation(s):  University of Bristol, Department of Electrical and Electronic Engineering, Centre for Communications Research, Bristol BS8 1UB, UK; more

Corresponding email(s):   Pierre.Ferre@bristol.ac.uk

Key Words:  Link adaptation, Wireless LAN, Video quality, Peak Signal to Noise Ratio (PSNR), Packet Error Rate (PER)


Ferré Pierre, Doufexi Angela, Chung-how James, Nix Andrew, Bull David. Video quality based link adaptation for low latency video transmission over WLANs[J]. Journal of Zhejiang University Science A, 2006, 7(5): 847-856.

@article{title="Video quality based link adaptation for low latency video transmission over WLANs",
author="Ferré Pierre, Doufexi Angela, Chung-how James, Nix Andrew, Bull David",
journal="Journal of Zhejiang University Science A",
volume="7",
number="5",
pages="847-856",
year="2006",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2006.A0847"
}

%0 Journal Article
%T Video quality based link adaptation for low latency video transmission over WLANs
%A Ferré
%A Pierre
%A Doufexi Angela
%A Chung-how James
%A Nix Andrew
%A Bull David
%J Journal of Zhejiang University SCIENCE A
%V 7
%N 5
%P 847-856
%@ 1673-565X
%D 2006
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2006.A0847

TY - JOUR
T1 - Video quality based link adaptation for low latency video transmission over WLANs
A1 - Ferré
A1 - Pierre
A1 - Doufexi Angela
A1 - Chung-how James
A1 - Nix Andrew
A1 - Bull David
J0 - Journal of Zhejiang University Science A
VL - 7
IS - 5
SP - 847
EP - 856
%@ 1673-565X
Y1 - 2006
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2006.A0847


Abstract: 
Wireless Local Area Networks (WLANs) such as IEEE 802.11a/g and Hiperlan/2 utilise numerous transmission modes, each providing different throughputs and reliability levels. Many link adaptation algorithms proposed in the literature either maximise the error-free data throughput based on channel conditions or are based on the number of failed transmissions. However, these algorithms do not take into account the content of the data stream and strongly rely on the use of Automatic Repeat Requests (ARQs). Low latency video applications such as real-time video transmission may require no retransmission, or only a limited number of retransmissions. Moreover, completely error-free communication is not essential, especially if robust video compression techniques are applied. In such scenarios, improved decoded video quality can be obtained with a video stream transmitted at a higher bit rate using a higher link speed but with some degree of transmission error, rather than an error-free video stream at a lower bit rate using a lower link speed. In this work, we investigate a link adaptation scheme that improves the Quality of Service (QoS) for video transmission, based on the overall received video quality (Peak Signal to Noise Ratio, PSNR), rather than by maximising the error-free throughput. We also study a practical link adaptation approach that uses PER thresholds at the PHY layer. An empirical study showed that thresholds for switching from one mode to another are much lower (almost error free) than those currently used by throughput based schemes. We show that traditional link adaptation strategies are not appropriate for real-time video transmission with no retransmission. Simulation results using the H.264 video compression standard over IEEE 802.11a are presented.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1] Ci, S., Sharif, H., 2002. A Variable Data Rate Scheme to Enhance Throughput Performance of Wireless LANs. IEEE CSNDSP.

[2] Doufexi, A., Armour, S., Butler, M., Nix, A., Bull, D., 2001. A study of the performance of Hiperlan/2 and IEEE 802.11a physical layers. IEEE VTC, 2:668-672.

[3] Doufexi, A., Armour, S., Karlsson, P., Butler, M., Nix, A., Bull, D., 2002. A comparison of the Hiperlan/2 and IEEE 802.11a Wireless LAN standards. IEEE Communications Magazine, 40(5):172-180.

[4] Ferré, P., Doufexi, A., Chung-How, J., Nix, A., Bull, D., 2003. Link Adaptation for Video Transmission over COFDM Based WLANs. IEEE SCVT. Eindhoven.

[5] Girod, B., Kalman, M., Liang, Y., Zhang, R., 2002. Advances in channel-adaptive video streaming. Journal of Wireless Communications and Mobile Computing, 2(6):573-584.

[6] Haratcherev, I., Langendoen, K., 2004. Hybrid Rate Control for IEEE802.11. ACM International Workshop on Mobility Management and Wireless Access (MobiWac), Philadelphia.

[7] Haratcherev, I., Langendoen, K., Lagendijk, I., Sips, H., 2002. D3.16: Application-directed Automatic 802.11 Rate Control. GigaMobile Project, TU Delf, Tech. Rep.

[8] Haratcherev, I., Langendoen, K., Lagendijk, R., Sips, H., 2004. SNR-based Rate Control in WaveLAN. ASCI 2004 Conference. Port Zelande.

[9] Haratcherev, I., Taal, J., Langendoen, K., Lagendijk, R., Sips, H., 2005. Automatic IEEE 802.11 rate control for streaming applications. Wireless Communications and Mobile Computing, 5(4):421-437.

[10] Hoffman, C., Manshaie, M.H., Turletti, T., 2005. CLARA: Closed-Loop Adaptive Rate Allocation for IEEE 802.11 Wireless LANs. IEEE WirelessCom’. Hawaii.

[11] Holland, G., Vaidya, N., Bahl, P., 2001. A Rate-Adaptive MAC Protocol for Multi-Hop Wireless Networks. Mobicom. Rome.

[12] H264 software, 2005. H.264/AVC Software Coordination. http://bs.hhi.de/~suehring/tml/.

[13] IEEE 802.11, 1999. Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications.

[14] IEEE 802.11a, 1999. Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: High-Speed Physical Layer in the 5 GHz Band, d7.0.

[15] IEEE 802.11g, 2001. Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Further High-Speed Physical Layer in the 2.4 GHz Band, d1.1.

[16] J.V.T.J. of ISO/IEC MPEG and I.T. VCEG, ITU-T H.264, 2005. Series H: Audiovisual and Multimedia Systems— Advanced Video Coding for Generic Audiovisual Services.

[17] Khun-Jush, J., Schramm, P., Malmgren, G., Torsner, J., 2002. HiperLAN2: broadband wireless communications at 5 GHz. IEEE Communications Magazine, 40(6):130-136.

[18] Lacage, M., Manshaei, M.H., Turletti, T., 2004. IEEE 802.11 Rate Adaptation: A Practical Approach. INRIA, Tech. Rep.

[19] Lin, Z., Malmgren, G., Torsner, J., 2000. System performance analysis of link adaptation in HiperLAN Type 2. IEEE VTC, 4:1719-1725.

[20] Manshaei, M.H., Turletti, T., Krunz, M., 2004. A media-orientated transmission mode selection in 802.11 wireless LANs. IEEE WCNC, 2:1228-1233.

[21] Qiao, D., Choi, S., 2002. Goodput analysis and link adaptation for IEEE 802.11a wireless LANs. IEEE Transactions on Mobile Computing, 1(4):278-292.

[22] Qiao, D., Choi, S., Jain, A., Shin, K.G., 2003. MiSer: An Optimal Low-Energy Transmission Strategy for IEEE 802.11a/h. Mobicom. San Diego.

[23] Setton, E., Yoo, T., Zhu, X., Goldsmith, A., Girod, B., 2005. Cross-layer design of ad-hoc networks for real-time video streaming. IEEE Wireless Communications, 12(4):59-65.

[24] van der Schaar, M., Shankar, S., 2005. Cross-layer wireless multimedia transmission: challenges, principles and new paradigms. IEEE Wireless Communications, 12(4):50-58.

[25] van der Schaar, M., Krishnamachari, S., Choi, S., Xu, X., 2003. Adaptive cross-layer protection strategies for robust scalable video transmission over WLANs. IEEE Journal on Selected Areas in Communications, 21(10):1752-1763.

[26] van der Vegt, A., 2002. Auto Rate Fall Back Algorithm for IEEE 802.11a Standard. High Performance Computing Group, Faculty of Physics and Astronomy, University of Utrecht, Tech. Rep.

[27] Wang, Y.K., Hannuksela, M.M., Varsa, V., Hourunranta, A., Gabbouj, M., 2002. The error concealment feature in the H.26L test model. IEEE ICIP, 2:729-732.

[28] Yuen, W.H., Lee, H.N., Andersen, T.D., 2002. A simple and effective cross layer networking system for mobile ad-hoc networks. IEEE PIMRC, 4:1952-1956.

[29] Zhu, H., Li, M., Chlantac, I., Prabhakaran, B., 2004. A survey of quality of service in IEEE 802.11e networks. IEEE Wireless Communications, 11(4):6-14.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE