CLC number: TP39
On-line Access:
Received: 2006-04-07
Revision Accepted: 2006-04-19
Crosschecked: 0000-00-00
Cited: 5
Clicked: 4882
GRANBERG Carl J., LI Ling. Out-of-core clustering of volumetric datasets[J]. Journal of Zhejiang University Science A, 2006, 7(7): 1134-1140.
@article{title="Out-of-core clustering of volumetric datasets",
author="GRANBERG Carl J., LI Ling",
journal="Journal of Zhejiang University Science A",
volume="7",
number="7",
pages="1134-1140",
year="2006",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2006.A1134"
}
%0 Journal Article
%T Out-of-core clustering of volumetric datasets
%A GRANBERG Carl J.
%A LI Ling
%J Journal of Zhejiang University SCIENCE A
%V 7
%N 7
%P 1134-1140
%@ 1673-565X
%D 2006
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2006.A1134
TY - JOUR
T1 - Out-of-core clustering of volumetric datasets
A1 - GRANBERG Carl J.
A1 - LI Ling
J0 - Journal of Zhejiang University Science A
VL - 7
IS - 7
SP - 1134
EP - 1140
%@ 1673-565X
Y1 - 2006
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2006.A1134
Abstract: In this paper we present a novel method for dividing and clustering large volumetric scalar out-of-core datasets. This work is based on the Ordered Cluster Binary Tree (OCBT) structure created using a top-down or divisive clustering method. The OCBT structure allows fast and efficient sub volume queries to be made in combination with level of detail (LOD) queries of the tree. The initial partitioning of the large out-of-core dataset is done by using non-axis aligned planes calculated using Principal Component Analysis (PCA). A hybrid OCBT structure is also proposed where an in-core cluster binary tree is combined with a large out-of-core file.
[1] Co, C.S., Hagen, H., Hamann, B., Heckel, B., Joy, K.I., 2003a. Hierarchical Clustering for Unstructured Volumetric Scalar Fields. Proceedings IEEE Visualization’2003, p.325-332.
[2] Co, C.S., Hamann, B., Joy, K.I., 2003b. Iso-Splatting: A Point-based Alternative to Isosurface Visualization. Proceedings of the 11th Pacific Conference on Computer Graphics and Applications 2003, p.325-334.
[3] Ding, C., He, X., 2002. Cluster Merging and Splitting in Hierarchical Clustering Algorithms. Proc. of the 2002 IEEE International Conference on Data Mining (ICDM’02), p.139-146.
[4] Granberg, C., Li, L., 2005. Hierarchical Clustering of Large Volumetric Datasets. Proceedings of the 3rd International Conference on Computer Graphics and Interactive Techniques in Australasia and South East Asia, p.425-428.
[5] Heckel, B., Uva, A., Hamann, B., 1997. Cluster-Based Generation of Hierarchical Surface Models. Sientific Visualization’97, p.105-114.
[6] Heckel, B., Uva, A., Hamann, B., Joy, K.I., 1999a. Surface Reconstruction Using Adaptive Clustering Methods. Technical Report CSE-99-1, Computer Science Department, University of California, Davis.
[7] Heckel, B., Weber, G., Hamann, B., Joy, K., 1999b. Construction of Vector Field Hierarchies. Proceedings IEEE Visualization’99, p.19-25.
[8] Isenburg, M., Gumhold, S., 2003. Out-of-core compression for gigantic polygon meshes. ACM Trans. Graphics (SIGGRAPH’03), 22(3):935-942.
[9] Ma, K., McCormick, P., Wilson, B., 2002. A Hardware-Assisted Hybrid Rendering Technique for Interactive Volume Visualization. Volume Visualization and Graphics Symposium 2002, p.123-130.
[10] Masciari, E., Pizzuti, C., Raimondo, G., Talia, D., 2001. Using an Out-of-core Technique for Clustering Large Datasets. Proceedings DEXA 2001 Workshops. IEEE Computer Society Press, p.133-137.
[11] Telea, A., van Wijk, J., 1999. Simplified Representation of Vector Fields. Proceedings IEEE Visualization’99, p.35-42.
[12] Pavan, M., Pelillo, M., 2003. Dominant Sets and Hierarchical Clustering. Proc. of the 9th IEEE International Conference on Computer Vision, p.362-369.
[13] Yoon, S.E., Salmon, B., Gayle, R., Manocha, D., 2005. Quick-VDR: Out-of-core view-dependent rendering of gigantic models. IEEE Transactions on Visualization and Computer Graphics, 11(4):369-382.
Open peer comments: Debate/Discuss/Question/Opinion
<1>