Full Text:   <2024>

CLC number: TP391

On-line Access: 

Received: 2006-05-20

Revision Accepted: 2006-06-21

Crosschecked: 0000-00-00

Cited: 2

Clicked: 4168

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
1. Reference List
Open peer comments

Journal of Zhejiang University SCIENCE A 2006 Vol.7 No.9 P.1572-1577


Generalized fairing algorithm of parametric cubic splines

Author(s):  WANG Yuan-jun, CAO Yuan

Affiliation(s):  School of Mathematical Science, Fudan University, Shanghai 200433, China

Corresponding email(s):   wyj803@yahoo.com.cn, caoy@fudan.edu.cn

Key Words:  Curve fairing, Tangent vector, Energy optimization, Cubic splines

WANG Yuan-jun, CAO Yuan. Generalized fairing algorithm of parametric cubic splines[J]. Journal of Zhejiang University Science A, 2006, 7(9): 1572-1577.

@article{title="Generalized fairing algorithm of parametric cubic splines",
author="WANG Yuan-jun, CAO Yuan",
journal="Journal of Zhejiang University Science A",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Generalized fairing algorithm of parametric cubic splines
%A WANG Yuan-jun
%A CAO Yuan
%J Journal of Zhejiang University SCIENCE A
%V 7
%N 9
%P 1572-1577
%@ 1673-565X
%D 2006
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2006.A1572

T1 - Generalized fairing algorithm of parametric cubic splines
A1 - WANG Yuan-jun
A1 - CAO Yuan
J0 - Journal of Zhejiang University Science A
VL - 7
IS - 9
SP - 1572
EP - 1577
%@ 1673-565X
Y1 - 2006
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2006.A1572

Kjellander has reported an algorithm for fairing uniform parametric cubic splines. Poliakoff extended Kjellander’s algorithm to non-uniform case. However, they merely changed the bad point’s position, and neglected the smoothing of tangent at bad point. In this paper, we present a fairing algorithm that both changed point’s position and its corresponding tangent vector. The new algorithm possesses the minimum property of energy. We also proved Poliakoff’s fairing algorithm is a deduction of our fairing algorithm. Several fairing examples are given in this paper.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1] Farin, G., Sapides, N., 1989. Curvature and the fairness of curves and surfaces. IEEE Computer Graphics and Applications, 9(2):52-57.

[2] Kjellander, J.A.P., 1983. Smoothing of cubic parametric splines. Computer-Aided Design, 15(3):175-179.

[3] Lee, E.T.Y., 1990. Energy, fairness, and a counterexample. Computer-Aided Design, 22(1):37-40.

[4] Li, W., Xu, S., Zheng, J., Zhao, G., 2004. Target curvature driven fairing algorithm for planar B-spline curves. Computer Aided Geometric Design, 21:499-513.

[5] Poliakoff, J.F., 1996. An improved algorithm for automatic fairing of non-uniform parametric cubic splines. Computer-Aided Design, 28(1):59-66.

[6] Wang, X., Cheng, F., Barsky, B.A., 1997. Energy and B-spline interproximation. Computer-Aided Design, 29(7):485-496.

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2022 Journal of Zhejiang University-SCIENCE