CLC number: TN2
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 11
Clicked: 5317
THYLÉN L., HE Sailing, WOSINSKI L., DAI Daoxin. The Moore’s Law for photonic integrated circuits[J]. Journal of Zhejiang University Science A, 2006, 7(12): 1961-1967.
@article{title="The Moore’s Law for photonic integrated circuits",
author="THYLÉN L., HE Sailing, WOSINSKI L., DAI Daoxin",
journal="Journal of Zhejiang University Science A",
volume="7",
number="12",
pages="1961-1967",
year="2006",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2006.A1961"
}
%0 Journal Article
%T The Moore’s Law for photonic integrated circuits
%A THYLÉ
%A N L.
%A HE Sailing
%A WOSINSKI L.
%A DAI Daoxin
%J Journal of Zhejiang University SCIENCE A
%V 7
%N 12
%P 1961-1967
%@ 1673-565X
%D 2006
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2006.A1961
TY - JOUR
T1 - The Moore’s Law for photonic integrated circuits
A1 - THYLÉ
A1 - N L.
A1 - HE Sailing
A1 - WOSINSKI L.
A1 - DAI Daoxin
J0 - Journal of Zhejiang University Science A
VL - 7
IS - 12
SP - 1961
EP - 1967
%@ 1673-565X
Y1 - 2006
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2006.A1961
Abstract: We formulate a “moore’s Law” for photonic integrated circuits (PICs) and their spatial integration density using two methods. One is decomposing the integrated photonics devices of diverse types into equivalent basic elements, which makes a comparison with the generic elements of electronic integrated circuits more meaningful. The other is making a complex component equivalent to a series of basic elements of the same functionality, which is used to calculate the integration density for functional components realized with different structures. The results serve as a benchmark of the evolution of PICs and we can conclude that the density of integration measured in this way roughly increases by a factor of 2 per year. The prospects for a continued increase of spatial integration density are discussed.
[1] Adar, R., Henry, C.H., Dragone, C., Kistler, R.C., Milbrodt, M.A., 1993. Broad-band array multiplexers made with silica waveguides on silicon. J. Lightwave Technol., 11(2):212-219.
[2] Bach, H.G., Umbach, A., van Waasen, S., Bertenburg, R.M., 1996. Ultrafast monolithically integrated InP-based photoreceiver: OEIC-design, fabrication, and system application. IEEE Journal of Selected Topics in Quantum Electronics, 2(2):418-422.
[3] Barbarin, Y., Leijtens, X.J.M., Bente, E.A.J.M., Louzao, C.M., Kooiman, J.R., Smit, M.K., 2004. Extremely small AWG demultiplexer fabricated on InP by using a double-etch process. IEEE Photonics Technol. Lett., 16(11):2478-2480.
[4] Bissessur, H., Gaborit, F., Martin, B., Ripoche, G., 1995. Polarisation-independent phased-array demultiplexer on InP with high fabrication tolerance. Electron. Lett., 31(16):1372-1373.
[5] Bissessur, H., Pagnod-Rossiaux, P., Mestric, R., Martin, B., 1996. Extremely small polarization independent phased-array demultiplexers on InP. IEEE Photonics Technol. Lett., 8(4):554-556.
[6] Bozhevolnyi, S.I., Kov, V.S., Devaux, E., Laluet, J.Y., Ebbesen, T.W., 2006. Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature, 440(7083):508-511.
[7] Cremer, C., Erneis, N., Schier, M., Heise, G., Ebbinghaus, G., Stoll, L., 1992. Grating spectrograph integrated with photodiode array in InGaAsP/InGaAs/InP. IEEE Photonics Technol. Lett., 4(1):108-110.
[8] Dai, D.X., Liu, L., Wosinski, L., He, S., 2006. Design and fabrication of an ultra-small overlapped AWG demultiplexer based on α-Si nanowire waveguides. Electron. Lett., 42(7):400-402.
[9] de Peralta, L.G., Bernussi, A.A., Frisbie, S., Gale, R., Temkin, H., 2003. Reflective arrayed waveguide grating multiplexer. IEEE Photonics Technol. Lett., 15(10):1398-1400.
[10] den Besten, J.H., Dessens, M.P., Herben, C.G.P., Leijtens, X.J.M., Groen, F.H., Leys, M.R., Smit, M.K., 2002. Low-loss, compact, and polarization independent PHASAR demultiplexer fabricated by using a double-etch process. IEEE Photonics Technol. Lett., 14(1):62-64.
[11] Dumon, P., Bogaerts, W., van Thourhout, D., Dumon, P., Bogaerts, W., van Thourhout, D., Taillaert, D., Wiaux, V., Beckx, S., Wouters, J., Baets, R., 2004. Wavelength-selective Components in SOI Photonic Wires Fabricated with Deep UV Lithography. 1st IEEE International Conference on Group IV Photonics, p.28-30.
[12] Dumon, P., Bogaerts, W., Wiaux, V., Wouters, J., Beckx, S., van Campenhout, J., Taillaert, D., Luyssaert, B., Bienstman, P., van Thourhout, D., Baets, R., 2004. Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography. IEEE Photonics Technol. Lett., 16(5):1328-1330.
[13] Granestrand, P., Stoltz, B., Thylén, L., Bergvall, K., Doldissen, W., Heidrich, H., Hoffmann, D., 1986. Strictly non-blocking 8×8 integrated optical switch matrix. Electron. Lett., 22:816-817.
[14] Gustavsson, M., Lagerstrom, B., Thylén, L., Janson, M., Lundgren, L., Morner, A.C., Rask, M., Stoltz, B., 1992. Monolithically Integrated 4×4 Laser Amplifier Gate Switch Arrays. Proc. OSA Topical Meeting on Optical Amplifiers and their Applications, paper PD9.
[15] Hibino, Y., 2002. Recent advances in high-density and large-scale AWG multi/demultiplexers with higher index-contrast silica-based PLCs. IEEE Journal of Selected Topics in Quantum Electronics, 8(6):1090-1101.
[16] Hida, Y., Hibino, Y., Itoh, M., Sugita, A., Himeno, A., 2000. Fabrication of low-loss and polarisation insensitive 256 channel arrayed-waveguide grating with 25 GHz spacing using 1.5% waveguides. Electron. Lett., 36(9):820-821.
[17] Hida, Y., Hibino, Y., Kitoh, T., Inoue, Y., Itoh, M., Shibata, T., Sugita, A., Himeno, A., 2001. 400-channel arrayed-waveguide grating with 25 GHz spacing using 1.5%-Δ waveguides on 6-inch Si wafer. Electron. Lett., 37(9):576-577.
[18] Inoue, K., Takato, N., Toba, H., Kawachi, M., 1988. A four-channel optical waveguide multi/demultiplexer for 5-GHz spaced optical FDM transmission. J. Lightwave Technol., 6(2):339-345.
[19] Inoue, Y., Himeno, A., Moriwaki, K., Kawachi, M., 1995. Silica-based arrayed-waveguide grating circuit as optical splitter/router. Electron. Lett., 31(9):726-727.
[20] Ishii, H., Sanjoh, H., Kohtoku, M., Oku, S., Kadota, Y., 1998. Monolithically Integrated WDM Channel Selectors on InP Substrates. 24th European Conference on Optical Communication, p.329-330.
[21] Ishii, M., Takagi, A., Hida, Y., Itoh, M., Kamei, S., Saida, T., Hibino, Y., Sugita, A., Kitagawa, T., 2001. Low-loss fibre-pigtailed 256 channel arrayed-waveguide grating multiplexer using cascaded laterally-tapered waveguides. Electron. Lett., 37(23):1401-1402.
[22] Janz, S., Balakrishnan, A., Charbonneau, S., Cheben, P., Cloutier, M., Delage, A., Dossou, K., Erickson, L., Gao, M., Krug, P.A., Lamontagne, B., Packirisamy, M., Pearson, M., Xu, D.X., 2004. Planar waveguide echelle gratings in silica-on-silicon. IEEE Photonics Technol. Lett., 16(2):503-505.
[23] Kamei, S., Inoue, Y., Mizuno, T., Iemura, K., Shibata, T., Kaneko, A., Takahashi, H., 2005. Extremely low-loss 1.5%-D 32-channel athermal arrayed-waveguide grating multi/demultiplexer. Electron. Lett., 41(9):544-546.
[24] Kohtoku, M., Sanjoh, H., Oku, S., Kadota, Y., Yoshikuni, Y., 1997. InP-based 64-channel arrayed waveguide grating with 50 GHz channel spacing and up to −20 dB crosstalk. Electron. Lett., 33(21):1786-1787.
[25] Luff, B.J., Tsatourian, V., Stopford, P.A.L., Roberts, S.W., Drake, J.P., Fuller, S.A., Asghari, M., 2003. Planar reflection grating wavelength filters in silicon. J. Lightwave Technol., 21(12):3387-3391.
[26] Maru, K., Abe, Y., Ito, M., Ishikawa, H., Himi, S., Uetsuka, H., Mizumoto, T., 2005. 2.5%-silica-based athermal arrayed waveguide grating employing spot-size converters based on segmented core. IEEE Photonics Technol. Lett., 17(11):2325-2327.
[27] Menezo, S., Talneau, A., Delorme, F., Grosmaire, S., 1999. 10-wavelength 200-GHz channel spacing emitter integrating DBR Lasers with a PHASAR on InP for WDM applications. IEEE Photonics Technol. Lett., 11(1):785.
[28] Moore, G.E., 1965. Moore’s Law. Electronics, 38:113-118.
[29] Okamoto, K., Moriwaki, K., Suzuki, S., 1995. Fabrication of 64×64 arrayed-waveguide grating multiplexer on silicon. Electron. Lett., 31(3):184-186.
[30] Okamoto, K., Syuto, K., Takahashi, H., Ohmori, Y., 1996. Fabrication of 128-channel arrayed waveguide grating multiplexer with 25 GHz channel spacing. Electron. Lett., 32(16):1474-1476.
[31] Sasaki, K., Ohno, F., Motegi, A., Baba, T., 2005. Arrayed waveguide grating of 70 μm×60 μm size based on Si photonic wire waveguides. Electron. Lett., 41(14):801-802.
[32] Smit, M., 2005. Trends in Passive Devices for Photonic Integration. Proceedings of Opto Electronics and Communication Conference (OECC 2005), Seoul, South Korea, p.848-849.
[33] Soole, J.B.D., Scherer, A., Leblanc, H.P., Andreadakis, N.C., Bhat, R., Koza, M.A., 1991. Monolithic InP-based grating spectrometer for wavelength-division multiplexed systems at 1.5 pm. Electron. Lett., 27(2):132-134.
[34] Soole, J.B.D., Amersfoort, M.R., LeBlanc, H.P., 1995. Polarisation-independent monolithic eight-channel 2-nm spacing WDM detector based on compact arrayed waveguide demultiplexer. Electron. Lett., 31(15):1289-1291.
[35] Sun, Z.J., McGreer, K.A., Broughton, J.N., 1997. Integrated concave grating WDM demultiplexer with 0.144 nm channel spacing. Electron. Lett., 33(13):1140-1142.
[36] Sun, Z.J., McGreer, K.A., Broughton, J.N., 1998. Demultiplexer with 120 channels and 0.29-nm channel spacing. IEEE Photonics Technol. Lett., 10(1):90-92.
[37] Tachikawa, Y., Inoue, Y., Ishii, M., Nozawa, T., 1996. Arrayed-waveguide grating multiplexer with loop-back optical paths and its applications. J. Lightwave Technol., 14(6):977-984.
[38] Takahashi, H., Suzuki, S., Kato, K., Nishi, I., 1990. Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometre resolution. Electron. Lett., 26(2):87-88.
[39] Takahashi, H., Suzuki, S., Nishi, I., 1994. Wavelength multiplexer based on SiO2-Ta2O5 arrayed-waveguide grating. J. Lightwave Technol., 12(6):989-995.
[40] Takahashi, H., Oda, K., Toba, H., Inoue, Y., 1995. Transmission characteristics of arrayed waveguide N×N wavelength multiplexer. J. Lightwave Technol., 13(3):447-455.
[41] Takato, N., Kominato, T., Sugita, A., Jinguji, K., Toba, H., Kawachi, M., 1990. Silica-based integrated optic mach-zehnder multi/demultiplexer family with channel spacing of 0.01~250 nm. IEEE Journal on Selected Areas in Communications, 8(6):1120-1127.
[42] Trinh, P.D., Yegnanarayanan, S., Coppinger, F., Jalali, B., 1997. Silicon-on-insulator (SOI) phased-array wavelength multi/demultiplexer with extremely low-polarization sensitivity. IEEE Photonics Technol. Lett., 9(7):940-942.
[43] Vellekoop, R., Smit, M.K., 1991. Four-channel integrated-optic wavelength demultiplexer with weak polarization dependence. J. Lightwave Technol., 9(3):310-314.
[44] Wisely, D.R., 1991. 32 channel WDM multiplexer with 1 nm channel spacing and 0.7 nm bandwidth. Electron. Lett., 27(6):520-521.
[45] Zirngibl, M., Dragone, C., Joyner, C.H., 1992. Demonstration of a 15×15 arrayed waveguide multiplexer on InP. IEEE Photonics Technol. Lett., 4(11):1250-1253.
[46] Zirngibl, M., Joyner, C.H., Stulz, L.W., Gaiffe, T., Dragone, C., 1993. Polarisation independent 8×8 waveguide grating multiplexer on InP. Electron. Lett., 29(2):201-202.
Open peer comments: Debate/Discuss/Question/Opinion
<1>
adult dating@No address<ml@meet-women-now.com>
2011-02-11 15:13:32
True phrase