Full Text:   <2824>

CLC number: R28

On-line Access: 

Received: 2005-12-07

Revision Accepted: 2005-12-13

Crosschecked: 0000-00-00

Cited: 6

Clicked: 5665

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
1. Reference List
Open peer comments

Journal of Zhejiang University SCIENCE B 2006 Vol.7 No.2 P.99-106


Early metabolism evaluation making traditional Chinese medicine effective and safe therapeutics

Author(s):  Liu Yong, Yang Ling

Affiliation(s):  Laboratory of Pharmaceutical Resource Discovery, Dalian Institute of Chemical Physics, the Chinese Academy of Sciences, Dalian 116023, China

Corresponding email(s):   yling@dicp.ac.cn

Key Words:  Traditional Chinese medicine (TCM), Metabolism, Gastrointestinal biotransformation

Liu Yong, Yang Ling. Early metabolism evaluation making traditional Chinese medicine effective and safe therapeutics[J]. Journal of Zhejiang University Science B, 2006, 7(2): 99-106.

@article{title="Early metabolism evaluation making traditional Chinese medicine effective and safe therapeutics",
author="Liu Yong, Yang Ling",
journal="Journal of Zhejiang University Science B",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Early metabolism evaluation making traditional Chinese medicine effective and safe therapeutics
%A Liu Yong
%A Yang Ling
%J Journal of Zhejiang University SCIENCE B
%V 7
%N 2
%P 99-106
%@ 1673-1581
%D 2006
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2006.B0099

T1 - Early metabolism evaluation making traditional Chinese medicine effective and safe therapeutics
A1 - Liu Yong
A1 - Yang Ling
J0 - Journal of Zhejiang University Science B
VL - 7
IS - 2
SP - 99
EP - 106
%@ 1673-1581
Y1 - 2006
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2006.B0099

Increasing attention is being paid to the scientific evaluation of traditional Chinese medicine (TCM). As many TCMs are capable of biotransformation in the gastrointestinal tract, attention to biotransformation of TCM in the gastrointestinal tract may lead to discovery of the active components and active mechanisms. In this article, we review reports that host metabolic enzymes and intestinal bacteria may be responsible for the metabolism of TCM. Good understanding of the in vivo course of TCM will help us to know how to conduct metabolism evaluation of TCM by using in vitro human-derived system. This evaluation system will create new views on TCM as effective and safe therapeutic agents.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1] Abdel-Hafez, A.A., Meselhy, M.R., Nakamura, N., Hattori, M., Watanabe, H., Mohamed, T.A., Mahfouz, N.M., el-Gendy, M.A., 1998. Potent anticonvulsant paeonimetabolin-I derivatives obtained by incubation of paeoniflorin and thiol compounds with Lactobacillus brevis. Chem. Pharm. Bull., 46:1486-1487.

[2] Ansede, J.H., Thakker, D.R., 2004. High-throughput screening for stability and inhibitory activity of compounds toward cytochrome P450-mediated metabolism. J. Pharm. Sci., 93(2):239-255.

[3] Barone, G.W., Gurley, B.J., Ketel, B.L., Lightfoot, M.L., Abul-Ezz, S.R., 2000. Drug interaction between St. John’s Wort and cyclosporin. Ann. Pharmacother., 34(9):1013-1016.

[4] Chauret, N., Gauthier, A., Martin, J., Nicoll-Griffith, D.A., 1997. In vitro comparison of cytochrome P450-mediated metabolic activities in human, dog, cat, and horse. Drug Metab. Dispos., 25:1130-1136.

[5] Crespi, C.L., Miller, V.P., 1999. The use of heterologously expressed drug metabolizing enzymes−state of the art and prospects for the future. Pharmacol. Ther., 84(2):121-131.

[6] de Smet, P.A., 2002. Herbal remedies. New Engl. J. Med., 347(25):2046-2056.

[7] Delaforge, M., 1998. Importance of metabolism in pharmacological studies: possible in vitro predictability. Nucl. Med. Biol., 25(8):705-709.

[8] Dreessen, M., Eyssen, H., Lemli, J., 1981. The metabolism of sennosides A and B by the intestinal microflora: in vitro and vivo studies on the rat and the mouse. J. Pharm. Pharmacol., 33:679-681.

[9] Eddershaw, P.J., Beresford, A.P., Bayliss, M.K., 2000. ADME/PK as part of a rational approach to drug discovery. Drug Discov. Today, 5(9):409-414.

[10] Ferrini, J.B., Pichard, L., Domergue, J., Maurel, P., 1997. Long-term primary cultures of adult human hepatocytes. Chemico-Biological Interactions, 107(1-2):31-45.

[11] Gonzalez, F.P., 1989. The molecular biology of cytochrome P450s. Pharmacol. Rev., 40:243-288.

[12] Gunaratna, C., 2000. Drug metabolism and pharmacokinetics in drug discovery: a primer for bioanalytical chemists, part I. Curr. Sep., 19:17-23.

[13] Hasegawa, H., 2004. Proof of the mysterious efficacy of ginseng: basic and clinical trials: metabolic activation of ginsenoside: deglycosylation by intestinal bacteria and esterification with fatty acid. J. Pharmacol. Sci., 95(2):153-157.

[14] Holtbecker, N., Fromm, M.F., Kroemer, H.K., Ohnhms, E.F., Heidermann, H., 1996. The nifedipine-rifampin interaction: evidence for induction of gut wall metabolism. Drug Metab. Dispos., 24:1121-1123.

[15] Holzapfel, W.H., Haberer, P., Snel, J., Schillinger, U., Huis in’t Veld, J.H., 1998. Overview of gut flora and probiotics. Int. J. Food Microbiol., 41(2):85-101.

[16] Hooper, L.V., Wong, M.H., Thelin, A., Hansson, L., Falk, P.G., Gordon, J.I., 2001. Molecular analysis of commensal host-microbial relationships in the intestine (cites personal communication from Joshua Lederberg). Science, 291(5505):881-884.

[17] Ingelman-Sundberg, M., 2004. Pharmacogenetics of cytochrome P450 and its applications in drug therapy: the past, present and future. Trends Pharmacol. Sci., 25(4):193-200.

[18] Iyer, K.R., Sinz, M.W., 1999. Characterization of Phase I and Phase II hepatic drug metabolism activities in a panel of human liver preparations. Chemico-Biological Interactions, 118(2):151-169.

[19] Kaminsky, L.S., Zhang, Q.Y., 2003. The small intestine as a xenobiotic-metabolizing organ. Drug Metab. Dispos., 31(12):1520-1525.

[20] Kedderis, G.L., 1997. Pharmacokinetics of drug interactions. Adv. Pharmacol., 43:189-203.

[21] Kennedy, T., 1997. Managing the drug discovery/development interface. Drug Discov. Today, 2(10):436-444.

[22] Kim, D.H., Jung, E.A., Sohng, I.S., Han, J.A., Kim, T.H., Han, M.J., 1998. Intestinal bacterial metabolism of flavonoids and its relation to some biological activities. Arch. Pharm. Res., 21:17-23.

[23] Ko, R.J., 2004. A U.S. perspective on the adverse reactions from traditional Chinese medicines. J. Chin. Med. Assoc., 67:109-116.

[24] Kobashi, K., Akao, T., 1997. Relation of intestinal bacteria to pharmacological effects of glycosides. Bifidobacteria Microflora, 16:1-7.

[25] Kobashi, K., Akao, T., Hattori, M., Namba, T., 1992. Metabolism of drugs by intestinal bacteria. Bifidobacteria Microflora, 11:9-23.

[26] Kola, I., Landis, J., 2004. Can the pharmaceutical industry reduce attrition rates? Nat. Rev. Drug Discov., 3(8):711-715.

[27] Lasker, J.M., Wester, M.R., Aramsombatdee, E., Raucy, J.L., 1998. Characterization of CYP2C19 and CYP2C9 from human liver: respective roles in microsomal tolbutamide, S-mephenytoin, and omeprazole hydroxylations. Arch. Biochem. Biophys., 353(1):16-28.

[28] Lin, J.H., Lu, A.Y.H., 1998. Inhibition and induction of cytochrome P450 and the clinical implications. Clin. Pharmacokinet., 5:361-390.

[29] Liu, Y., Li, W., Li, P., Deng, M.C., Yang, S.L., Yang, L., 2004. The inhibitory effect of intestinal bacterial metabolite of ginsenosides on CYP3A activity. Biol. Pharm. Bull., 27(10):1555-1560.

[30] Mackie, R., Sghir, A., Gaskins, H.R., 1999. Developmental microbial ecology of the neonatal gastrointestinal tract. Am. J. Clin. Nutr., 69:1035S-1045S.

[31] Margolis, J.M., Obach, R.S., 2003. Impact of nonspecific binding to microsomes and phospholipid on the inhibition of cytochrome P4502D6: implications for relating in vitro inhibition data to in vivo drug interactions. Drug Metab. Dispos., 31(5):606-611.

[32] Masimirembwa, C.M., Thompson, R., Andersson, T.B., 2001. In vitro high throughput screening of compounds for favorable metabolic properties in drug discovery. Comb. Chem. High Throughput Screen, 4:245-263.

[33] Nicholson, J.K., Holmes, E., Wilson, I.D., 2005. Gut microorganisms, mammalian metabolism and personalized health care. Nat. Rev. Microbiol., 3(5):431-438.

[34] Obach, R.S., Zhang, Q.Y., Dunbar, D., Kaminsky, L.S., 2001. Metabolic characterization of the major human small intestinal cytochrome P450s. Drug Metab. Dispos., 29:347-352.

[35] Paine, M.F., Shen, D.D., Kunze, K.L., Perkins, J.D., Marsh, C.L., McVicar, J.P., Barr, D.M., Gillies, B.S., Thummel, K.E., 1996. First-pass metabolism of midazolam by the human intestine. Clin. Pharmacol. Ther., 60(1):14-24.

[36] Piscitelli, S.C., Burstein, A.H., Chaitt, D., Alfaro, R.M., Falloon, J., 2000. Indinavir concentrations and St. John’s Wort. The Lancet, 355(9203):547-548.

[37] Prentis, R.A., Lis, Y., Walker, S.R., 1988. Pharmaceutical innovation by the seven UK-owned pharmaceutical companies (1964~1985). Br. J. Clin. Pharmacol., 25:387-396.

[38] Rodrigues, A.D., Wong, S.L., 1997. Application of human liver microsomes in metabolism-based drug-drug interactions. Adv. Pharmacol., 43:65-101.

[39] Rosenblatt, M., Mindel, J., 1997. Spontaneous hyphema associated with ingestion of Ginkgo biloba extract. New Engl. J. Med., 336(15):1108.

[40] Schaeffeler, E., Schwab, M., Eichelbaum, M., Zanger, U.M., 2003. CYP2D6 genotyping strategy based on gene copy number determination by TaqMan real-time PCR. Human Mutation, 22(6):476-485.

[41] Shimada, T., Yamazaki, H., Mimura, M., Inui, Y., Guengerich, F.P., 1994. Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians. J. Pharmacol. Exp. Ther., 270:414-423.

[42] Shu, Y.Z., Hattori, M., Akao, T., Kobashi, K., Kagei, K., Fukuyama, K., Tsukihara, T., Namba, T., 1987. Metabolism of paeoniflorin and related compounds by human intestinal bacteria. II. Structures of 7S-and 7R-paeonimetabolines I and II formed by Bacteroides fragilis and Lactobacillus brevis. Chem. Pharm. Bull., 35:3726-3733.

[43] Siow, Y.L., Gong, Y., Au-Yeung, K.K., Woo, C.W., Choy, P.C., O, K., 2005. Emerging issues in traditional Chinese medicine. Can. J. Physiol. Pharmacol., 83(4):321-334.

[44] Sunter, W.H., 1991. Warfarin and garlic. Pharm. J., 246:722.

[45] Wrighton, S.A., Stevens, J.C., 1992. The human hepatic cytochromes P450 involved in drug metabolism. Crit. Rev. Toxicol., 22:1-21.

[46] Yan, Z., Caldwell, G.W., 2001. Metabolism profiling, and cytochrome P450 inhibition and induction in drug discovery. Curr. Top. Med. Chem., 1(5):403-425.

[47] Yang, L., Akao, T., Kobashi, K., Hattori, M., 1996. Purification and characterization of a novel sennoside-hydro lyzing beta-glucosidase from Bifidobacterium sp. strain SEN, a human intestinal anaerobe. Biol. Pharm. Bull., 19:705-709.

[48] Yim, J.S., Kim, Y.S., Moon, S.K., Cho, K.H., Bae, H.S., Kim, J.J., Park, E.K., Kim, D.H., 2004. Metabolic activities of ginsenoside Rb1, baicalin, glycyrrhizin and geniposide to their bioactive compounds by human intestinal microflora. Biol. Pharm. Bull., 27(10):1580-1583.

[49] Yue, Q.Y., Bergquist, C., Gerden, B., 2000. Safety of St. John’s Wort (Hypericum perforatum). The Lancet, 355(9203):576-577.

[50] Zhang, Q.Y., Dunbar, D., Ostrowska, A., Zeisloft, S., Yang, J., Kaminsky, L.S., 1999. Characterization of human small intestinal cytochromes P-450. Drug Metab. Dispos., 27:804-809.

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE