CLC number: TP391.72
On-line Access:
Received: 2007-01-10
Revision Accepted: 2007-05-15
Crosschecked: 0000-00-00
Cited: 1
Clicked: 5239
ZOU Wan-hong, DING Zhan, YE Xiu-zi, CHEN Zhi-yang. Interactive point cloud blending by drag-and-drop[J]. Journal of Zhejiang University Science A, 2007, 8(10): 1633-1641.
@article{title="Interactive point cloud blending by drag-and-drop",
author="ZOU Wan-hong, DING Zhan, YE Xiu-zi, CHEN Zhi-yang",
journal="Journal of Zhejiang University Science A",
volume="8",
number="10",
pages="1633-1641",
year="2007",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2007.A1633"
}
%0 Journal Article
%T Interactive point cloud blending by drag-and-drop
%A ZOU Wan-hong
%A DING Zhan
%A YE Xiu-zi
%A CHEN Zhi-yang
%J Journal of Zhejiang University SCIENCE A
%V 8
%N 10
%P 1633-1641
%@ 1673-565X
%D 2007
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2007.A1633
TY - JOUR
T1 - Interactive point cloud blending by drag-and-drop
A1 - ZOU Wan-hong
A1 - DING Zhan
A1 - YE Xiu-zi
A1 - CHEN Zhi-yang
J0 - Journal of Zhejiang University Science A
VL - 8
IS - 10
SP - 1633
EP - 1641
%@ 1673-565X
Y1 - 2007
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2007.A1633
Abstract: With the rapid development of 3D digital photography and 3D digital scanning devices, massive amount of point samples can be generated in acquisition of complex, real-world objects, and thus create an urgent need for advanced point-based processing and editing. In this paper, we present an interactive method for blending point-based geometries by dragging-and-dropping one point-based model onto another model’s surface metaphor. We first calculate a blending region based on the polygon of interest when the user drags-and-drops the model. Radial basis function is used to construct an implicit surface which smoothly interpolates with the transition regions. Continuing the drag-and-drop operation will make the system recalculate the blending regions and reconstruct the transition regions. The drag-and-drop operation can be compound in a constructive solid geometry (CSG) manner to interactively construct a complex point-based model from multiple simple ones. Experimental results showed that our method generates good quality transition regions between two raw point clouds and can effectively reduce the rate of overlapping during the blending.
[1] Adams, B., Dutre, P., 2003a. Interactive boolean operations on surfel-bounded solids. ACM Trans. on Graph., 22(3):651-656.
[2] Adams, B., Dutre, P., 2003b. A Smoothing Operator for Boolean Operations on Surfel-bounded Solids. Geometric Computing Group Tech. Rep., Stanford University.
[3] Adams, B., Wicke, M., Dutre, P., Gross, M., Pauly, M., Teschner, M., 2004. Interactive 3D Painting on Point-sampled Objects. Proc. Eurographics Symp. on Point Based Graphics. Grenoble, France, p.57-66.
[4] Alexa, M., Behr, J., Cohen-Or, D., Fleishman, S., Levin, D., Silva, C.T., 2001. Point Set Surfaces. Proc. Conf. on Visualization. Washington, DC, p.21-28.
[5] Alexa, M., Behr, J., Cohen-Or, D., Fleishman, S., Levin, D., Silva, C.T., 2003. Computing and rendering point set surfaces. IEEE Trans. on Visual. Computer Graph., 9(1):3-15.
[6] Beatson, R.K., Powell, M.J.D., Tan, A.M., 2006. Fast Evaluation of Polyharmonic Splines in Three Dimensions. Technical Report, NA2006/03. Numerical Analysis Group, Department of Applied Mathematics and Theoretical Physics, University of Cambridge.
[7] Botsch, M., Kobbelt, L.P., 2005. Real-time shape editing using radial basis functions. Computer Graphics Forum, 24(3):611-621.
[8] Carr, J.C., Beatson, R.K., Cherrie, J.B., Mitchell, T.J., Fright, W.R., Mccallum, B.C., Evans, T.R., 2001. Reconstruction and Representation of 3D Objects with Radial Basis Functions. Proc. SIGGRAPH. Los Angeles, CA, p.67-76.
[9] Chen, F.Z., Chen, Z.Y., Ding, Z., Ye, X.Z., Zhang, S.Y., 2006. Filling holes in point cloud with radial basis function. J. Computer-Aided Design and Computer Graphics, 18(9):1414-1419 (in Chinese).
[10] Du, J., Zhang, L.Y., Wang, H.T., Liu, S.L., 2005. Hole repairing in triangular meshes based on radial basis function. J. Computer-Aided Design and Computer Graphics, 17(9):1976-1982 (in Chinese).
[11] Fang, S.F., Srinivasan, R., Raghavan, R., Richtsmeier, J.T., 2000. Volume morphing and rendering—an integrated approach. Computer Aided Geometric Design, 17(1):59-81.
[12] Grossman, J.P., Dally, J., 1998. Point Sample Rendering. Proc. 9th Eurographics Workshop on Rendering. Vienna, p.181-192.
[13] Guo, X.H., Li, X., Bao, Y.F., Gu, X.F., Qin, H., 2006. Meshless thin-shell simulation based on global conformal parameterization. IEEE Trans. on Visual. Computer Graph., 12(3):375-385.
[14] Igarashi, T., Hughes, J.F., 2003. Smooth Meshes for Sketch-based Freeform Modeling. Proc. Symp. on Interactive 3D Graphics. Monterey, CA, p.139-142.
[15] Jin, X.G., Lin, J.C., Wang, C., Feng, J.Q., Sun, H.Q., 2006. Mesh fusion using functional blending on topologically incompatible sections. The Visual Computer, 22(4):266-275.
[16] Levin, D., 2003. Mesh-independent Surface Interpolation. Geometric Modeling for Scientific Visualization. Springer-Verlag, p.37-49.
[17] Liu, Y.S., Zhang, H., Yong, J.H., Yu, P.Q., Sun, J.G., 2005. Mesh blending. The Visual Computer, 21(11):915-927.
[18] Pauly, M., Keiser, R., Kobbelt, L.P., Gross, M., 2003. Shape Modeling with Point-sampled Geometry. SIGGRAPH. San Diego, CA, p.641-650.
[19] Qian, J.F., Chen, Z.Y., Zhang, S.Y., Ye, X.Z., 2005. The detection of boundary point of point cloud compression. J. Image Graph., 10(2):21-28 (in Chinese).
[20] Reuter, P., Tobor, I., Schlick, C., Dedieu, S., 2003. Point-based Modelling and Rendering Using Radial Basis Functions. GRAPHITE. Melbourne, Australia, p.111-118.
[21] Savchenko, V., Pasko, A., Okunev, O., Kunii, T., 1995. Function representation of solids reconstructed from scattered surface points and contours. Computer Graphics Forum, 14(4):181-188.
[22] Turk, G., O'Brien, J.F., 2002. Modelling with implicit surfaces that interpolate. ACM Trans. on Graph., 21(4):855-873.
[23] Yang, Z.Y., Zheng, W.T., Peng, Q.S., 2005. Interactive boolean operations on general point models. J. Computer-Aided Design and Computer Graphics, 17(5):954-961 (in Chinese).
[24] Zwicker, M., Pauly, M., Knoll, O., Gross, M., 2002. Pointshop 3D: an interactive system for point-based surface editing. ACM Trans. on Graph., 21(3):322-329.
Open peer comments: Debate/Discuss/Question/Opinion
<1>