CLC number: TP317.4
On-line Access:
Received: 2008-09-07
Revision Accepted: 2008-12-22
Crosschecked: 2009-06-10
Cited: 0
Clicked: 6277
Yu GU, Ping LI, Bo HAN. Embedding ensemble tracking in a stochastic framework for robust object tracking[J]. Journal of Zhejiang University Science A, 2009, 10(10): 1476-1482.
@article{title="Embedding ensemble tracking in a stochastic framework for robust object tracking",
author="Yu GU, Ping LI, Bo HAN",
journal="Journal of Zhejiang University Science A",
volume="10",
number="10",
pages="1476-1482",
year="2009",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A0820647"
}
%0 Journal Article
%T Embedding ensemble tracking in a stochastic framework for robust object tracking
%A Yu GU
%A Ping LI
%A Bo HAN
%J Journal of Zhejiang University SCIENCE A
%V 10
%N 10
%P 1476-1482
%@ 1673-565X
%D 2009
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A0820647
TY - JOUR
T1 - Embedding ensemble tracking in a stochastic framework for robust object tracking
A1 - Yu GU
A1 - Ping LI
A1 - Bo HAN
J0 - Journal of Zhejiang University Science A
VL - 10
IS - 10
SP - 1476
EP - 1482
%@ 1673-565X
Y1 - 2009
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A0820647
Abstract: We propose an algorithm of embedding ensemble tracking in a stochastic framework to achieve robust tracking performance under partial occlusion, illumination changes, and abrupt motion. It operates on likelihood images generated by the ensemble method, and combines mean shift and particle filtering in a principled way, where a better proposal distribution is designed by first propagating particles via a motion model, and then running mean shift to move towards their local peaks in the likelihood image. An observation model in the particle filter incorporates global and local information within a region, and an adaptive motion model is adopted to depict the evolution of the object state. The algorithm needs fewer particles to manage the tracking task compared with the general particle filter, and recaptures the object quickly after occlusion occurs. Experiments on two image sequences demonstrate the effectiveness and robustness of the proposed algorithm.
[1] Arulampalam, M.S., Maskell, S., Gordon, N., Clapp, T., 2002. A tutorial on particle filters for online nonlinear/ non-Gaussian Bayesian tracking. IEEE Trans. Signal Process., 50(2):174-188.
[2] Avidan, S., 2007. Ensemble tracking. IEEE Trans. Pattern Anal. Mach. Intell., 29(2):261-271.
[3] Bradski, G.R., 1998. Real Time Face and Object Tracking as a Component of a Perceptual User Interface. Proc. 4th IEEE Workshop on Applications of Computer Vision, p.214-219.
[4] Collins, R.T., Liu, Y., Leordeanu, M., 2005. Online selection of discriminative tracking features. IEEE Trans. Pattern Anal. Mach. Intell., 27(10):1631-1643.
[5] Comaniciu, D., Ramesh, V., Meer, P., 2003. Kernel-based object tracking. IEEE Trans. Pattern Anal. Mach. Intell., 25(5):564-577.
[6] Dalai, N., Triggs, B., 2005. Histograms of Oriented Gradients for Human Detection. Proc. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, 1:886-893.
[7] Freund, Y., Schapire, R.E., 1996. Experiments with a New Boosting Algorithm. Proc. 13th Int. Conf. on Machine Learning, p.148-156.
[8] Friedman, J., Hastie, T., Tibshirani, R., 2000. Additive logistic regression: a statistical view of boosting. Ann. Statist., 28(2):337-374.
[9] Isard, M., Blake, A., 1998a. CONDENSATION: conditional density propagation for visual tracking. Int. J. Comput. Vis., 29(1):5-28.
[10] Isard, M., Blake, A., 1998b. ICONDENSATION: Unifying Low-level and High-level Tracking in a Stochastic Framework. Proc. 5th European Conf. on Computer Vision, 1406:893-908.
[11] Jepson, A.D., Fleet, D.J., El-Maraghi, T.F., 2003. Robust online appearance models for visual tracking. IEEE Trans. Pattern Anal. Mach. Intell., 25(10):1296-1311.
[12] Maggio, E., Cavallaro, A., 2005. Hybrid Particle Filter and Mean Shift Tracker with Adaptive Transition Model. Proc. IEEE Conf. on Acoustics, Speech, and Signal Processing, 2:221-224.
[13] Odobez, J.M., Gatica-Perez, D., Ba, S.O., 2006. Embedding motion in model-based stochastic tracking. IEEE Trans. Image Process., 15(11):3514-3530.
[14] Perez, P., Hue, C., Vermaak, J., Gangnet, M., 2002. Color-based Probabilistic Tracking. Proc. 7th European Conf. on Computer Vision, 2350:661-675.
[15] Shan, C.F., Tan, T.N., Wei, Y.C., 2007. Real-time hand tracking using a mean shift embedded particle filter. Pattern Recogn., 40(7):1958-1970.
[16] Yilmaz, A., Javed, O., Shah, M., 2006. Object tracking: a survey. ACM Comput. Surv., 38(4):Article No. 13, p.1-45.
[17] Zhou, S.K., Chellappa, R., Moghaddam, B., 2004. Visual tracking and recognition using appearance-adaptive models in particle filters. IEEE Trans. Image Process., 13(11):1491-1506.
Open peer comments: Debate/Discuss/Question/Opinion
<1>