CLC number: X24; O62
On-line Access:
Received: 2009-06-08
Revision Accepted: 2009-08-07
Crosschecked: 2009-08-08
Cited: 5
Clicked: 7926
Zheng SHEN, Fang-ming JIN, Ya-lei ZHANG, Bing WU, Jiang-lin CAO. Hydrogen transfer reduction of ketones using formic acid as a hydrogen donor under hydrothermal conditions[J]. Journal of Zhejiang University Science A, 2009, 10(11): 1631-1635.
@article{title="Hydrogen transfer reduction of ketones using formic acid as a hydrogen donor under hydrothermal conditions",
author="Zheng SHEN, Fang-ming JIN, Ya-lei ZHANG, Bing WU, Jiang-lin CAO",
journal="Journal of Zhejiang University Science A",
volume="10",
number="11",
pages="1631-1635",
year="2009",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A0920097"
}
%0 Journal Article
%T Hydrogen transfer reduction of ketones using formic acid as a hydrogen donor under hydrothermal conditions
%A Zheng SHEN
%A Fang-ming JIN
%A Ya-lei ZHANG
%A Bing WU
%A Jiang-lin CAO
%J Journal of Zhejiang University SCIENCE A
%V 10
%N 11
%P 1631-1635
%@ 1673-565X
%D 2009
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A0920097
TY - JOUR
T1 - Hydrogen transfer reduction of ketones using formic acid as a hydrogen donor under hydrothermal conditions
A1 - Zheng SHEN
A1 - Fang-ming JIN
A1 - Ya-lei ZHANG
A1 - Bing WU
A1 - Jiang-lin CAO
J0 - Journal of Zhejiang University Science A
VL - 10
IS - 11
SP - 1631
EP - 1635
%@ 1673-565X
Y1 - 2009
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A0920097
Abstract: The hydrothermal experiments with ketones and formic acid showed that the hydrogen transfer reduction of ketones can be conducted using formic acid as a hydride donor in the presence of NaOH at 300 °C. The yield of alcohols was considerably higher at a much lower ratio of hydrogen source to ketones than the traditional Meerwein-Ponndorf-Verley (MPV) reduction, reaching 60% for isopropanol from acetone and 70% for lactic acid from pyruvic acid. Water molecules may act as a catalyst in the hydrogen transfer reduction of ketones under hydrothermal conditions.
[1] Akiya, N., Savage, P.E., 2002. The roles of water for chemical reactions in high-temperature water. Chemical Reviews, 102(8):2725-2750.
[2] Alonso, F., Riente, P., Yus, M., 2008a. Hydrogen-transfer reduction of carbonyl compounds catalysed by nickel nanoparticles. Tetrahedron Letters, 49(12):1939-1942.
[3] Alonso, F., Riente, P., Yus, M., 2008b. Hydrogen-transfer reduction of carbonyl compounds promoted by nickel nanoparticles. Tetrahedron, 64(8):1847-1852.
[4] Campbell, E.J., Zhou, H., Nguyen, S.T., 2001. Catalytic Meerwein-Ponndorf-Verley reduction by simple aluminum complexes. Organic Letters, 3(15):2391-2393.
[5] Creyghton, E.J., Ganeshie, S.D., Downing, R.S., van Bekkum, H., 1997. Stereoselective Meerwein-Ponndorf-Verley and oppenauer reactions catalysed by zeolite BEA. Journal of Molecular Catalysis A: Chemical, 115(3):457-472.
[6] de Graauw, C.F., Peters, J.A., van Bekkum, H., Huskens, J., 1994. Meerwein-Ponndorf-Verley reductions and oppenauer oxidations: an integrated approach. Synthesis, 1994(10):1007-1017.
[7] Ekström, J., Wettergren, J., Adolfsson, H., 2007. A simple and efficient catalytic method for the reduction of ketones. Advanced Synthesis & Catalysis, 349(10):1609-1613.
[8] Fujii, A., Hashiguchi, S., Uematsu, N., Ikariya, T., Noyori, R., 1996. Ruthenium(II)-catalyzed asymmetric transfer hydrogenation of ketones using a formic acid-triethylamine mixture. Journal of the American Chemical Society, 118(10):2521-2522.
[9] Jin, F.M., Kishita, A., Moriya, T., Enomoto, H., 2001. Kinetics of oxidation of food wastes with H2O2 in supercritical water. The Journal of Supercritical Fluids, 19(3):251-262.
[10] Jin, F.M., Zhou, Z., Enomoto, H., Moriya, T., Higashijima, H., 2004. Conversion mechanism of cellulosic biomass to lactic acid in subcritical water and acid-base catalytic effect of subcritical water. Chemistry Letters, 33(2):126-127.
[11] Jin, F.M., Yun, J., Li, G.M., Kishita, A., Tohji, K., Enomoto, H., 2008. Hydrothermal conversion of carbohydrate biomass into formic acid at mild temperatures. Green Chemistry, 10(6):612-615.
[12] Kuhlmann, B., Arnett, E.M., Siskin, M., 1994. Classical or ganic reactions in pure superheated water. The Journal of Organic Chemistry, 59(11):3098-3101.
[13] Larock, R.C., 1989. Comprehensive Organic Transformation. VCH Publication, New York, p.35-39.
[14] Li, C., Yamai, I., Murase, Y., Kato, E., 1989. Formation of acicular monoclinic zirconia particles under hydrothermal conditions. Journal of the American Ceramic Society, 72(8):1479-1482.
[15] Matharu, D.S., Morris, D.J., Clarkson, G.J., Wills, M., 2006. An outstanding catalyst for asymmetric transfer hydrogenation in aqueous solution and formic acid/ triethylamine. Chemical Communications, 30:3232-3234.
[16] Meerwein, H., Schmidt, R., 1925. Ein neues verfahren zur reaktion von aldehyden und ketonen. Justus Liebigs Annalen der Chemie, 444(1):221-238 (in German).
[17] Naskar, S., Bhattacharjee, M., 2007. Regiospecific solvent-free transfer hydrogenation of α, β-unsaturated carbonyl compounds catalyzed by a cationic ruthenium(II) compound. Tetrahedron Letters, 48(3):465-467.
[18] Ponndorf, W., 1926. Der reversible austausch der oxydationsstufen zwischen aldehyden oder ketonen einerseits und primären oder sekundären alkoholen anderseits. Zeitschrift für Angewandte Chemie, 39(5):138-143 (in Germany).
[19] Ruiz, J.R., Jiménez-Sanchidriána, C., Hidalgoa, J.M., 2007. Meerwein-Ponndorf-Verley reaction of acetophenones with 2-propanol over MgAl mixed oxide: the substituent effect. Catalysis Communications, 8(7):1036-1040.
[20] Shaw, R.W., Brill, Y.B., Clifford, A.A., Eckert, C.A., Franck, E.U., 1991. Supercritical water a medium for chemistry. Chemical Engineering News, 69(51):26-39.
[21] Sheldon, R.A., 1994. Consider the environmental quotient. ChemTech, 24(3):38-47.
[22] Tsujino, Y., Wakai, C., Matubayasi, N., Nakahara, M., 1999. Noncatalytic cannizzaro-type reaction of formaldehyde in hot water. Chemistry Letters, 28(4):287-288.
[23] Watanabe, M., Sato, T., Inomata, H., Smith, R.L., Arai, K., Kruse, A., Dinjus, E., 2004. Chemical reactions of C1 compounds in near-critical and supercritical water. Chemical Reviews, 104(12):5803-5822.
Open peer comments: Debate/Discuss/Question/Opinion
<1>