CLC number: O322
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2010-09-13
Cited: 6
Clicked: 6251
Zong-jian Yao, Gui-lan Yu, Yue-sheng Wang, Zhi-fei Shi, Jian-bao Li. Propagation of flexural waves in phononic crystal thin plates with linear defects[J]. Journal of Zhejiang University Science A, 2010, 11(10): 827-834.
@article{title="Propagation of flexural waves in phononic crystal thin plates with linear defects",
author="Zong-jian Yao, Gui-lan Yu, Yue-sheng Wang, Zhi-fei Shi, Jian-bao Li",
journal="Journal of Zhejiang University Science A",
volume="11",
number="10",
pages="827-834",
year="2010",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1000123"
}
%0 Journal Article
%T Propagation of flexural waves in phononic crystal thin plates with linear defects
%A Zong-jian Yao
%A Gui-lan Yu
%A Yue-sheng Wang
%A Zhi-fei Shi
%A Jian-bao Li
%J Journal of Zhejiang University SCIENCE A
%V 11
%N 10
%P 827-834
%@ 1673-565X
%D 2010
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1000123
TY - JOUR
T1 - Propagation of flexural waves in phononic crystal thin plates with linear defects
A1 - Zong-jian Yao
A1 - Gui-lan Yu
A1 - Yue-sheng Wang
A1 - Zhi-fei Shi
A1 - Jian-bao Li
J0 - Journal of Zhejiang University Science A
VL - 11
IS - 10
SP - 827
EP - 834
%@ 1673-565X
Y1 - 2010
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1000123
Abstract: The band structures of flexural waves in a phononic crystal thin plate with straight, bending or branching linear defects are theoretically investigated using the supercell technique based on the improved plane wave expansion method. We show the existence of an absolute band gap of the perfect phononic crystal and linear defect modes inside the gap caused by localization of flexural waves at or near the defects. The displacement distributions show that flexural waves can transmit well along the straight linear defect created by removing one row of cylinders from the perfect phononic crystals for almost all the frequencies falling in the band gap, which indicates that this structure can act as a high efficiency waveguide. However, for bending or branching linear defects, there exist both guided and localized modes, and therefore the phononic crystals could be served as waveguides or filters.
[1]Benchabane, S., Khelif, A., Choujaa, A., Djafari-Rouhani, B., Laude, V., 2005. Interaction of waveguide and localized modes in a phononic crystal. Europhysics Letters, 71(4):570-575.
[2]Bria, D., Djafari-Rouhani, B., 2002. Omnidirectional elastic band gap in finite lamellar structures. Physical Review E, 66(5):056609.
[3]Cao, Y.J., Hou, Z.L., Liu, Y.Y., 2004. Convergence problem of plane-wave expansion method for phononic crystals. Physics Letters A, 327(2-3):247-253.
[4]Charles, C., Bonello, B., Ganot, F., 2006. Propagation of guided elastic waves in 2D phononic crystals. Ultrasonics, 44(Suppl. 1):e1209-e1213.
[5]Hsu, J.C., Wu, T.T., 2006. Efficient formulation for band-structure calculations of two-dimensional phononic-crystal plates. Physical Review B, 74(14):144303.
[6]Kafesaki, M., Sigalas, M.M., Garcia, N., 2001. Wave guides in two-dimensional elastic wave band-gap materials. Physica B: Condensed Matter, 296(1-3):190-194.
[7]Khelif, A., Choujaa, A., Djafari-Rouhani, B., Wilm, M., Ballandras, S., Laude, V., 2003a. Trapping and guiding of acoustic waves by defect modes in a full-band-gap ultrasonic crystal. Physical Review B, 68(21):214301.
[8]Khelif, A., Djafari-Rouhani, B., Vasseur, J.O., Deymier, P.A., 2003b. Transmission and dispersion relations of perfect and defect-containing waveguide structures in phononic band gap materials. Physical Review B, 68(2):024302.
[9]Khelif, A., Choujaa, A., Benchabane, S., Djafari-Rouhani, B., Laude, V., 2004. Guiding and bending of acoustic waves in highly confined phononic crystal waveguides. Applied Physics Letters, 84(22):4400-4402.
[10]Li, L.F., 1996. Use of Fourier series in the analysis of discontinuous periodic structures. Journal of the Optical Society America A, 13(9):1870-1876.
[11]Li, X.C., Liu, Z.Y., 2005. Bending and branching of acoustic waves in two-dimensional phononic crystals with linear defects. Physics Letters A, 338(3-5):413-419.
[12]Pennec, Y., Djafari-Rouhani, B., Vasseur, J.O., Khelif, A., Deymier, P.A., 2004. Tunable filtering and demultiplexing in phononic crystals with hollow cylinders. Physical Review E, 69(4):046608.
[13]Pennec, Y., Djafari-Rouhani, B., Larabi, H., Vasseur, J.O., Hladky-Hennion, A.C., 2008. Low-frequency gaps in a phononic crystal constituted of cylindrical dots deposited on a thin homogeneous plate. Physical Review B, 78(10):104105.
[14]Sigalas, M.M., 1998. Defect states of acoustic waves in a two-dimensional lattice of solid cylinders. Journal of Applied Physics, 84(6):3026-3030.
[15]Sigalas, M.M., Economou, E.N., 1994. Elastic waves in plates with periodically placed inclusions. Journal of Applied Physics, 75(6):2845-2850.
[16]Sun, J.H., Wu, T.T., 2005. Analyses of mode coupling in joined parallel phononic crystal waveguides. Physical Review B, 71(17):174303.
[17]Sun, J.H., Wu, T.T., 2007. Propagation of acoustic waves in phononic-crystal plates and waveguides using a finite-difference time-domain method. Physical Review B, 76(10):104304.
[18]Tanaka, Y., Tamura, S.I., 1998. Surface acoustic waves in two-dimensional periodic elastic structures. Physical Review B, 58(12):7958-7965.
[19]Vasseur, J.O., Hladky-Hennion, A.C., Djafari-Rouhani, B., Duval, F., Dubus, B., Pennec, Y., Deymier, P.A., 2007. Waveguiding in two-dimensional piezoelectric phononic crystal plates. Journal of Applied Physics, 101(11):114904.
[20]Vasseur, J.O., Deymier, P.A., Djafari-Rouhani, B., Pennec, Y., Hladky-Hennion, A.C., 2008. Absolute forbidden bands and waveguiding in two-dimensional phononic crystal plates. Physical Review B, 77(8):085415.
[21]Wu, F.G., Liu, Z.Y., Liu, Y.Y., 2004. Splitting and tuning characteristics of the point defect modes in two-dimensional phononic crystals. Physical Review E, 69(6):066609.
[22]Wu, T.T., Huang, Z.G., Lin, S., 2004. Surface and bulk acoustic waves in two-dimensional phononic crystal consisting of materials with general anisotropy. Physical Review B, 69(9):094301.
[23]Yan, Z.Z., Wang, Y.S., 2006. Wavelet-based method for calculating elastic band gaps of two-dimensional phononic crystals. Physical Review B, 74(22):224303.
[24]Yan, Z.Z., Wang, Y.S., Zhang, C.Z., 2008. Wavelet method for calculating the defect states of two-dimensional phononic crystals. Acta Mechanica Solida Sinica, 21(2):104-109.
[25]Yao, Y.W., Wu, F.G., Hou, Z.L., Liu, Y.Y., 2007. Propagation properties of elastic waves in semi-infinite phononic crystals and related waveguides. The European Physical Journal B, 58(4):353-360.
[26]Yao, Z.J., Yu, G.L., Wang, Y.S., Shi, Z.F., 2009. Propagation of bending waves in phononic crystal thin plates with a point defect. International Journal of Solids and Structures, 46(13):2571-2576.
[27]Yu, D.L., Wang, G., Liu, Y.Z., Wen, J.H., Qiu, J., 2006. Flexural vibration band gaps in thin plates with two-dimensional binary locally resonant structures. Chinese Physics, 15(2):266-271.
[28]Zhang, X., Liu, Z., Liu, Y., Wu, F., 2004. Defect states in 2D acoustic band-gap materials with bend-shaped linear defects. Solid State Communications, 130(1-2):67-71.
[29]Zhang, X., Wu, F., Yao, Y., Liu, Z., 2010. Transverse waveband gaps and longitudinal wave band gaps in solid phononic crystals. Solid State Communications, 150(5-6):275-279.
[30]Zhong, H.L., Wu, F.G., Zhang, X., Liu, Y.Y., 2005. Localized defect modes of water waves through two-dimensional periodic bottoms with point defects. Physics Letters A, 339(6):478-487.
Open peer comments: Debate/Discuss/Question/Opinion
<1>