Full Text:   <4884>

Summary:  <2300>

CLC number: TM911

On-line Access: 2013-01-02

Received: 2012-05-26

Revision Accepted: 2012-11-01

Crosschecked: 2012-12-10

Cited: 11

Clicked: 7758

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2013 Vol.14 No.1 P.11-24

http://doi.org/10.1631/jzus.A1200134


Development of lanthanum strontium cobalt ferrite composite cathodes for intermediate- to low-temperature solid oxide fuel cells*


Author(s):  Nurul Akidah Baharuddin1, Hamimah Abd Rahman1,4, Andanastuti Muchtar1,2, Abu Bakar Sulong1,2, Huda Abdullah3

Affiliation(s):  1. Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia; more

Corresponding email(s):   muchtar@eng.ukm.my

Key Words:  Ceria-based composite cathode, Lanthanum strontium cobalt ferrite, Intermediate- to low-temperature solid oxide fuel cells (IT-LTSOFCs)


Nurul Akidah Baharuddin, Hamimah Abd Rahman, Andanastuti Muchtar, Abu Bakar Sulong, Huda Abdullah. Development of lanthanum strontium cobalt ferrite composite cathodes for intermediate- to low-temperature solid oxide fuel cells[J]. Journal of Zhejiang University Science A, 2013, 14(1): 11-24.

@article{title="Development of lanthanum strontium cobalt ferrite composite cathodes for intermediate- to low-temperature solid oxide fuel cells",
author="Nurul Akidah Baharuddin, Hamimah Abd Rahman, Andanastuti Muchtar, Abu Bakar Sulong, Huda Abdullah",
journal="Journal of Zhejiang University Science A",
volume="14",
number="1",
pages="11-24",
year="2013",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1200134"
}

%0 Journal Article
%T Development of lanthanum strontium cobalt ferrite composite cathodes for intermediate- to low-temperature solid oxide fuel cells
%A Nurul Akidah Baharuddin
%A Hamimah Abd Rahman
%A Andanastuti Muchtar
%A Abu Bakar Sulong
%A Huda Abdullah
%J Journal of Zhejiang University SCIENCE A
%V 14
%N 1
%P 11-24
%@ 1673-565X
%D 2013
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1200134

TY - JOUR
T1 - Development of lanthanum strontium cobalt ferrite composite cathodes for intermediate- to low-temperature solid oxide fuel cells
A1 - Nurul Akidah Baharuddin
A1 - Hamimah Abd Rahman
A1 - Andanastuti Muchtar
A1 - Abu Bakar Sulong
A1 - Huda Abdullah
J0 - Journal of Zhejiang University Science A
VL - 14
IS - 1
SP - 11
EP - 24
%@ 1673-565X
Y1 - 2013
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1200134


Abstract: 
Solid oxide fuel cells (SOFCs) offer high energy conversion, low noise, low pollutant emission, and low processing cost. Despite many advantages, SOFCs face a major challenge in competing with other types of fuel cells because of their high operating temperature. The necessity to reduce the operational temperature of SOFCs has led to the development of research into the materials and fabrication technology of fuel cells. The use of composite cathodes significantly reduces the cathode polarization resistance and expands the triple phase boundary area available for oxygen reduction. Powder preparation and composite cathode fabrication also affect the overall performance of composite cathodes and fuel cells. Among many types of cathode materials, lanthanum-based materials such as lanthanum strontium cobalt ferrite (La1-x Sr x Co1-y Fe y O3-δ ) have recently been discovered to offer great compatibility with ceria-based electrolytes in performing as composite cathode materials for intermediate- to low-temperature SOFCs (IT-LTSOFCs). This paper reviews various ceria-based composite cathodes for IT-LTSOFCs and focuses on the aspects of progress and challenges in materials technology.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

References

[1] Amar, I.A., Petit, C.T.G., Zhang, L., Lan, R., Skabara, P.J., Tao, S., 2011. Electrochemical synthesis of ammonia based on doped-ceria-carbonate composite electrolyte and perovs-kite cathode. Solid State Ionics, 201(1):94-100. 


[2] Baqu, L., Caneiro, A., Moreno, M.S., Serquis, A., 2008. High performance nanostructured IT-SOFC cathodes prepared by novel chemical method. Electrochemistry Communications, 10(12):1905-1908. 


[3] Besra, L., Uchikoshi, T., Suzuki, T.S., Sakka, Y., 2010. Experimental verification of pH localization mechanism of particle consolidation at the electrode/solution interface and its application to pulsed DC electrophoretic deposition (EPD). Journal of the European Ceramic Society, 30(5):1187-1193. 


[4] Chang, Y.C., Lee, M.C., Kao, W.X., Wang, C.H., Lin, T.N., Chang, J.C., 2011. Fabrication and evaluation of electrochemical characteristics of the composite cathode layers for the anode-supported solid-oxide fuel cells. Journal of the Taiwan Institute of Chemical Engineers, 42(5):775-782. 


[5] Chen, J., Liang, F., Liu, L., Jiang, S., Chi, B., Pu, J., Li, J., 2008. Nano-structured (La,Sr)(Co,Fe)O3+YSZ composite cathodes for intermediate temperature solid oxide fuel cells. Journal of Power Sources, 183(2):586-589. 


[6] Chen, J., Liang, F., Yan, D., Pu, J., Chi, B., Jiang, S.P., Jian, L., 2010. Performance of large-scale anode-supported solid oxide fuel cells with impregnated La0.6Sr0.4Co0.2Fe0.8O3−i +Y2O3 stabilized ZrO2 composite cathodes. Journal of Power Sources, 195(16):5201-5205. 


[7] DiGiuseppe, G., Li, S., 2011. Electrochemical performance of solid oxide fuel cell with an LSCF cathode under different oxygen concentrations. International Journal of Hydrogen Energy, 36(8):5076-5087. 


[8] Dusastre, V., Kilner, J.A., 1999. Optimisation of composite cathodes for intermediate temperature SOFC applications. Solid State Ionics, 126(1-2):163-174. 


[9] Dutta, A., Mukhopadhyay, J., Basu, R.N., 2009. Combustion synthesis and characterization of LSCF-based materials as cathode of intermediate temperature solid oxide fuel cells. Journal of European Ceramic Society, 29(10):2003-2011. 


[10] Fan, B., Liu, X., 2009. A-deficit LSCF for intermediate temperature solid oxide fuel cells. Solid State Ionics, 180(14-16):973-977. 


[11] Fan, B., Yan, J., Yan, X., 2011. The ionic conductivity, thermal expansion behavior, and chemical compatibility of La0.54Sr0.44Co0.2Fe0.8O3-d as SOFC cathode material. Solid State Ionics, 13:1835-1839. 

[12] Fergus, J.W., Hui, R., Li, X., 2009.  Solid Oxide Fuel Cells Materials Properties and Performance. CRC Press,New York :

[13] Fu, C., Sun, K., Zhang, N., Chen, X., Zhou, D., 2007. Electrochemical characteristics of LSCF-SDC composite cathode for intermediate temperature SOFC. Electrochimica Acta, 52(13):4589-4594. 


[14] Ghouse, M., Al-Yousef, Y., Al-Musa, A., Al-Otaibi, M.F., 2010. Preparation of La0.6Sr0.4Co0.2Fe0.8O3 nanoceramic cathode for solid oxide fuel cell (SOFC) application. Journal of Hydrogen Energy, 35(17):9411-9419. 


[15] Guo, W., Liu, J., Jin, C., Gao, H., Zhang, Y., 2009. Electrochemical evaluation of La0.6Sr0.4Co0.8Fe0.2O3−i –La0.9Sr0.1Ga0.8Mg0.2O3−i composite cathodes for La0.9Sr0.1Ga0.8Mg0.2O3−i electrolyte SOFCs. Journal of Alloy and Compounds, 473(1-2):43-47. 


[16] Huang, B., Qi, Y., Murshed, M., 2011. Solid oxide fuel cell: Perspective of dynamic modeling and control. Journal of Process Control, 21(10):1426-1437. 


[17] Huang, T.J., Chou, C.L., 2009. Feasibility of simultaneous NO reduction and electricity generation in SOFCs with V2O5 or Cu added LSCF-GDC cathodes. Electrochemistry Communications, 11(2):477-480. 


[18] Huang, T.J., Chou, C.L., 2010. Effect of voltage and temperature on NO removal with power generation in SOFC with V2O5-added LSCF-GDC cathode. Chemical Engineering Journal, 160(1):79-84. 


[19] Izuki, M., Brito, M.E., Yamaji, K., Kishimoto, H., Cho, D.Y., Shimonosono, T., Horita, T., Yokokawa, H., 2011. Interfacial stability and cation diffusion across the LSCF/GDC interface. Journal of Power Sources, 196(17):7232-7236. 


[20] Jadhav, L.D., Pawar, S.H., Chourashiya, M.G., 2007. Effect of sintering temperature on structural and electrical properties of gadolinium doped ceria (Ce0.9Gd0.1O19.5). Bulletin of Materials Science, 30(2):97-100. 


[21] Jarot, R., Muchtar, A., Wan Daud, W.R., Muhamad, N., Majlan, E.H., 2011. Fabrication of porous LSCF-SDC carbonates composite cathode for solid oxide fuel cell (SOFC) applications. Key Engineering Materials, 471-472:179-184. 


[22] Jarot, R., Muchtar, A., Wan Daud, W.R., 2011. La0.6Sr0.4Co0.2Fe0.8O3-δ -based Cathodes for SDC-Carbonate Composite. , 3rd International Conference on Fuel Cell & Hydrogen Technology, A13:A13

[23] Jiang, S.P., 2002. A comparison of O2 reduction reactions on porous (La,Sr)MnO3 and (La,Sr)(Co,Fe)O3 electrodes. Solid State Ionics, 146(1-2):1-22. 


[24] Jiang, S.P., 2006. A review of wet impregnation—An alternative method for the fabrication of high performance and nano-structured electrodes of solid oxide fuel cells. Materials Science and Engineering A, 418(1-2):199-210. 


[25] Jiang, Z., Xia, C., Chen, F., 2010. Nano-structured composite cathodes for intermediate-temperature solid oxide fuel cells via an infiltration/impregnation technique. Electrochimica Acta, 55(11):3595-3605. 


[26] Kawada, T., Yokokawa, H., 1997. Material and characterization of solid oxide fuel cell. Key Engineering Materials, 125-126:187-248. 


[27] Ke, K., Gunji, A., Mori, H., Tsuchida, S., Takahashi, H., Ukai, K., Mizutani, Y., Sumi, H., Yokoyama, M., Waki, K., 2006. Effect of oxide on carbon deposition behavior of CH4 fuel on Ni/ScSZ cermet anode in high temperature SOFC. Solid State Ionics, 177(5-6):541-547. 


[28] Kuharuangrong, S., 2004. Effects of Ni on the electrical conductivity and microstructure of La0.82Sr0.16MnO3Ceramics International, 30(2):273-277. 


[29] Lee, H.W., Liu, Z., Yang, L., Abernathy, H., Choi, S.H., Kim, H.E., Liu, M., 2009. Preparation of dense and uniform La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) films for fundamental studies of SOFC cathodes. Journal of Power Sources, 190(2):307-310. 


[30] Lee, S., Song, H.S., Hyun, S.H., Kim, J., Moon, J., 2010. LSCF-SDC core-shell high-performance durable composite cathode. Journal of Power Sources, 195(1):118-123. 


[31] Leng, Y.J., Chan, S.H., Jiang, S.P., Khor, K.A., 2004. Low-temperature SOFC with thin film GDC electrolyte prepared in situ by solid-state reaction. Solid State Ionics, 170(1-2):9-15. 


[32] Leng, Y.J., Chan, S.H., Liu, Q., 2008. Development of LSCF-GDC composite cathodes for low-temperature solid oxide fuel cells with thin film GDC electrolyte. International Journal of Hydrogen Energy, 33(14):3808-3817. 


[33] Li, S., Sun, X.L., Wen, Z.S., Sun, J.C., 2006. A new candidate as the cathode material for intermediate and low temperature SOFCs. Rare Metals, 25:213-217. 

[34] Li, Z., Mori, T., Aucheterlonie, G.J., Zou, J., Drennan, J., Miyayama, M., 2011. Diffusion and segregation along grain boundary at the electrolyte-anode interface in IT-SOFC. Solid State Ionics, 191(1):55-60. 


[35] Lin, Y., Barnett, S.A., 2008. La0.9Sr0.1Ga0.8Mg0.2O3−δ -La0.6Sr0.4Co0.2Fe0.8O3−θ composite cathodes for intermediate-temperature solid oxide fuel cells. Solid State Ionics, 179(11-12):420-427. 


[36] Liu, J., Anne, C.C., Paulson, S., Birss, V.I., 2006. Oxygen reduction at sol-gel derived La0.8Sr0.2Co0.8Fe0.2O3 cathodes. Solid State Ionics, 177(3-4):377-387. 


[37] Liu, Y., Hashimoto, S., Nishino, H., Takei, K., Mori, M., 2007. Fabrication and characterization of a co-fired La0.6Sr0.4Co0.2Fe0.8O3−δ cathode-supported Ce0.9Gd0.1O1.95 thin-film for IT-SOFCs. Journal of Power Sources, 164(1):56-64. 


[38] Mai, A., Haanappel, V.A.C., Uhlenbruck, S., Tietz, F., Stover, D., 2005. Ferrite-based perovskites as cathode materials for anode-supported solid oxide fuel cells: Part I. Variation of composition. Solid State Ionics, 176(15-16):1341-1350. 


[39] Mai, A., Becker, M., Assenmacher, W., Tietz, F., Hathiramani, D., Ivers-Tiffe, E., Stver, D., Mader, W., 2006. Time-dependent performance of mixed-conducting SOFC cathodes. Solid State Ionics, 177(19-25):1965-1968. 


[40] Menzler, N.H., Tietz, F., 2010. Materials and manufacturing technologies for solid oxide fuel cells. Journal of Materials Science, 45(12):3109-3135. 


[41] Minh, N.Q., 2004. Solid oxide fuel cells technology features and application. Solid State Ionics, 174(1-4):271-277. 


[42] Murray, E.P., Sever, M.J., Barnett, S.A., 2002. Electrochemical performance of (La,Sr)(Co,Fe)O3–(Ce,Gd)O3 composite cathodes. Solid State Ionics, 148(1-2):27-34. 


[43] Nie, L., Liu, M., Zhang, Y., Liu, M., 2010. La0.6Sr0.4Co0.2Fe0.8O3−d cathodes infiltrated with samarium-doped cerium oxide for solid oxide fuel cells. Journal of Power Sources, 195(15):4704-4708. 


[44] Nie, L., Liu, Z., Liu, M., Yang, L., Zhang, Y., Liu, M., 2010. Enhanced performance of La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF) cathodes with graded microstructure fabricated by tape casting. Journal of Electrochemical Science and Technology, 1(1):50-56. 


[45] Nielsen, J., Jacobsen, T., Wandel, M., 2011. Impedance of porous IT-SOFC LSCF: CGO composite cathodes. Electrochimica Acta, 56(23):7963-7974. 


[46] Qiang, F., Sun, K.N., Zhang, N.Q., Zhu, X.D., Le, S.R., Zhou, D.R., 2007. Characterization of electrical properties of GDC doped A-site deficient LSCF based composite cathode using impedance spectroscopy. Journal of Power Sources, 168(2):338-345. 


[47] Rahman, H.A., Muchtar, A., Muhamad, N., Abdullah, H., 2011. Fabrication and characterisation of La0.6Sr0.4Co0.2Fe0.8O3−d -SDC composite cathode. Key Engineering Materials, 471-472:268-273. 


[48] Rahman, H.A., Muchtar, A., Muhamad, N., Abdullah, H., 2012. Structure and thermal properties of La0.6Sr0.4Co0.2Fe0.8O3-d -SDC carbonate composite cathodes for intermediate- to low-temperature solid oxide fuel cells. Ceramics International, 38(2):1571-1576. 


[49] Serra, J.M., Uhlenbruck, S., Meulenberg, W.A., Buchkremer, H.P., Stver, D., 2006. Nano-structuring of solid oxide fuel cells cathodes. Topics in Catalysis, 40(1-4):123-131. 


[50] Shah, M., Barnett, S.A., 2008. Solid oxide fuel cell cathodes by infiltration of La0.6Sr0.4Co0.2Fe0.8O3−δ into Gd-doped ceria. Solid State Ionics, 179(35-36):2059-2064. 


[51] Sillassen, M., Eklund, P., Pryds, N., Bonanos, N., Bottiger, J., 2010. Concentration-dependent ionic conductivity and thermal stability of magnetron-sputtered nanocrystalline scandia-stabilized zirconia. Solid State Ionics, 181(23-24):1140-1145. 


[52] Simner, S.P., Bonnett, J.F., Canfield, N.L., Meinhardt, K.D., Shelton, J.P., Sprenkle, V.L., Stevenson, J.W., 2003. Development of lanthanum ferrite SOFC cathodes. Journal of Power Sources, 113(1):1-10. 


[53] Singh, K., Acharya, S.A., Bhoga, S.S., 2006. Nanosized ceria-based ceramics: a comparative study. Ionics, 12(4-5):295-301. 


[54] Steven, S.C., 2005. Catalysis of solid oxide fuel cells. Catalysis, 18:186-198. 

[55] Sun, C., Hui, R., Roller, J., 2010. Cathode materials for solid oxide fuel cells: a review. Journal of Solid State Electrochemistry, 14(7):1125-1144. 


[56] Thomas, E., Ehrman, S.H., Hwang, H.J., 2009.  Synthesis of LaSrCrO Nano Powder by Glycine Nitrate Process. PowerMEMS,Washington DC, USA :471-474. 

[57] Tietz, F., Haanappel, V.A.C., Mai, A., Mertens, J., Stver, D., 2006. Performance of LSCF cathodes in cell test. Journal of Power Sources, 156(1):20-22. 


[58] Tietz, F., Mai, A., Stver, D., 2008. From powder properties to fuel cell performance—A holistic approach for SOFC cathode development. Solid State Ionics, 179(27-32):1509-1515. 


[59] Timakul, P., 2004. Fabrication of Electrolyte Material for Solid Oxide Fuel Cells by Tape-Casting Technique, MS Thesis, Chulalongkorn University :

[60] Timurkultuk, B., 2007. Performance Analysis of an Intermediate Temperature Solid Oxide Fuel Cell, MS Thesis, Middle East Technical University :

[61] Viswanathan, B., Scibioh, M.A., 2007. Fuel Cells: Principles and Applications, Universities Press, CRC Press,:

[62] Wang, W.G., Mogensen, M., 2005. High-performance lanthanum-ferrite-based cathode for SOFC. Solid State Ionics, 176(5-6):457-462. 


[63] William, J.D., 2001. SOFC Materials Technology Development in Support of SECA, SECA Core Technology Workshop,:1-26. 

[64] Yamamoto, O., 2000. Solid oxide fuel cells: fundamental aspects and prospects. Electrochimica Acta, 45(15-16):2423-2435. 


[65] Zha, S., Cheng, J., Fu, Q., Meng, G., 2003. Ceramic fuel cells based on ceria-carbonate salt composite electrolyte. Materials Chemistry and Physics, 77(2):594-597. 


[66] Zhang, J., Ji, Y., Gao, H., He, T., Liu, J., 2005. Composite cathode La0.6Sr0.4Co0.2Fe0.8O3-Sm0.1Ce0.9O1.95-Ag for intermediate-temperature solid oxide fuel cells. Journal of Alloys and Compounds, 395(1-2):322-325. 


[67] Zhao, Y., Xiong, D.B., Qin, H., Gao, F., Inui, H., Zhu, B., 2011. Nanocomposite electrode materials for low temperature solid oxide fuel cells using the ceria-carbonate composite electrolytes. International Journal of Hydrogen Energy, 37(24):19351-19356. 


[68] Zhu, B., 2003. Functional ceria-salt-composite materials for advanced ITSOFC applications. Journal of Power Sources, 114(1):1-9. 


[69] Zuo, N., Zhang, M., Xie, F., Wang, C., Liu, Z., Mao, Z., 2012. Fabrication and characterization of anode support low-temperature solid oxide fuel cell based on the samaria-doped ceria electrolyte. International Journal of Hydrogen Energy, 37(1):797-801. 



Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE