Full Text:   <3732>

Summary:  <1683>

CLC number: TG174

On-line Access: 2013-04-03

Received: 2012-10-17

Revision Accepted: 2013-01-03

Crosschecked: 2013-03-06

Cited: 3

Clicked: 4885

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2013 Vol.14 No.4 P.292-299

http://doi.org/10.1631/jzus.A1200273


3D analysis for pit evolution and pit-to-crack transition during corrosion fatigue*


Author(s):  Xiao-guang Huang1, Jin-quan Xu2

Affiliation(s):  1. Department of Engineering Mechanics, China University of Petroleum, Qingdao 266580, China; more

Corresponding email(s):   huangupc@126.com

Key Words:  Pit, Evolving morphology, Thermodynamic potential, Critical pit size, Crack nucleation


Xiao-guang Huang, Jin-quan Xu. 3D analysis for pit evolution and pit-to-crack transition during corrosion fatigue[J]. Journal of Zhejiang University Science A, 2013, 14(4): 292-299.

@article{title="3D analysis for pit evolution and pit-to-crack transition during corrosion fatigue",
author="Xiao-guang Huang, Jin-quan Xu",
journal="Journal of Zhejiang University Science A",
volume="14",
number="4",
pages="292-299",
year="2013",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1200273"
}

%0 Journal Article
%T 3D analysis for pit evolution and pit-to-crack transition during corrosion fatigue
%A Xiao-guang Huang
%A Jin-quan Xu
%J Journal of Zhejiang University SCIENCE A
%V 14
%N 4
%P 292-299
%@ 1673-565X
%D 2013
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1200273

TY - JOUR
T1 - 3D analysis for pit evolution and pit-to-crack transition during corrosion fatigue
A1 - Xiao-guang Huang
A1 - Jin-quan Xu
J0 - Journal of Zhejiang University Science A
VL - 14
IS - 4
SP - 292
EP - 299
%@ 1673-565X
Y1 - 2013
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1200273


Abstract: 
This paper presents a deterministic model to predict the pit evolving morphology and crack initiation life of corrosion fatigue. Based on the semi-ellipsoidal pit assumption, the thermodynamic potential including elastic energy, surface energy and electrochemical energy of the cyclically stressed solid with an evolving pit is established, from which specific parameters that control the pit evolution are introduced and their influence on the pit evolution are evaluated. The critical pit size for crack nucleation is obtained from stress intensity factor criterion and the crack nucleation life is evaluated by Faraday’s law. Meanwhile, this paper presents a numerical example to verify the proposed model and investigate the influence of cyclic load on the corrosion fatigue crack nucleation life. The corrosion pit appears approximately as a hemisphere in its early formation, and it gradually transits from semicircle to ellipsoid. The strain energy accelerates the morphology evolution of the pit, while the surface energy decelerates it. The higher the stress amplitude is, the smaller the critical pit size is and the shorter the crack initiation life is.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

References

[1] Bhuiyan, M.S., Mutoh, Y., Murai, T., Iwakami, S., 2008. Corrosion fatigue behavior of extruded magnesium alloy AZ61 under three different corrosive environments. International Journal of Fatigue, 30(10-11):1756-1765. 


[2] Chen, G.S., Wan, K.C., Gao, M., Harlow, D.G., Wei, R.P., 1996. Transition from pitting to fatigue crack growth-modeling of corrosion fatigue crack nucleation in a 2024-T3 aluminum alloy. Materials Science and Engineering: A, 219(1-2):126-132. 


[3] Codaro, E.N., Nakazato, R.Z., Horovistiz, A.L., Ribeiro, L.M.F., Ribeiro, R.B., Hein, L.R.O., 2002. An image processing method for morphological characterization and pitting corrosion evaluation. Materials Science and Engineering: A, 334(1-2):298-306. 


[4] Ebara, R., 2007. Corrosion fatigue crack initiation in 12% chromium stainless steel. Materials Science and Engineering: A, 468-470:109-113. 


[5] Ernst, P., Laycock, N.J., Moayed, M.H., Newman, R.C., 1997. The mechanism of lacy cover formation in pitting. Corrosion Science, 39(6):1133-1136. 


[6] Eshelby, J.D., 1957. The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences, 241(1226):376-396. 


[7] Ghali, E., Dietzel, W., 2004. Testing of general and localized corrosion of magnesium alloys: a critical review. Journal of Materials Engineering and Performance, 13(1):7-23. 


[8] Harlow, D.G., Wei, R.P., 1994. Probability approach for prediction of corrosion and corrosion fatigue life. AIAA Journal, 32(10):2073-2082. 

[9] Harlow, D.G., Wei, R.P., 1998. A probability model for the growth of corrosion pits in aluminum alloys induced by constituent particles. Engineering Fracture Mechanics, 59(3):305-325. 


[10] Harlow, D.G., Wei, R.P., 2001. Probability modeling and statistical analysis of damage in the lower wing skins of two retired B-707 aircraft. Fatigue & Fracture of Engineering Materials & Structures, 24(8):523-535. 


[11] Ishihara, S., Saka, S., Nan, Z.Y., Goshima, T., Sunada, S., 2006. Prediction of corrosion fatigue lives of aluminium alloy on the basis of corrosion pit growth law. Fatigue & Fracture of Engineering Materials & Structures, 29(6):472-480. 


[12] Ishihara, S., Nan, Z.Y., McEvily, A.J., Goshima, T., Sunada, S., 2008. On the initiation and propagation behavior of corrosion pits during corrosion fatigue process of industrial pure aluminum. International Journal of Fatigue, 30(9):1659-1668. 


[13] Ishihara, S., Namito, T., Notoya, H., Okada, A., 2010. The corrosion fatigue resistance of an electrolytically-plated magnesium alloy. International Journal of Fatigue, 32(8):1299-1305. 


[14] Kondo, Y., 1987. Prediction method of corrosion fatigue crack initiation life based on corrosion pit growth mechanism. Transactions of the Japan Society of Mechanical Engineers Series A, 53(495):1983-1987. 

[15] Liao, C.M., Wei, R.P., 1999. Galvanic coupling of model alloys to aluminum—a foundation for understanding particle-induced pitting in aluminum alloys. Electrochimica Acta, 45(6):881-888. 


[16] Ma, J., Zhang, B., Wang, J., Wang, G., Han, E.H., Ke, W., 2010. Anisotropic 3D growth of corrosion pits initiated at MnS inclusions for A537 steel during corrosion fatigue. Corrosion Science, 52(9):2867-2877. 


[17] Palin-Luc, T., Perez-Mora, R., Bathias, C., Dominguez, G., Paris, P.C., Arana, J.L., 2010. Fatigue crack initiation and growth on a steel in the very high cycle regime with sea water corrosion. Engineering Fracture Mechanics, 77(11):1953-1962. 


[18] Perkins, K.M., Bache, M.R., 2005. Corrosion fatigue of a 12% Cr low pressure turbine blade steel in simulated service environments. International Journal of Fatigue, 27(10-12):1499-1508. 


[19] Rajasankar, J., Iyer, N.R., 2006. A probability-based model for growth of corrosion pits in aluminium alloys. Engineering Fracture Mechanics, 73(5):553-570. 


[20] Rokhlin, S.I., Kim, J.Y., Nagy, H., Zoofan, B., 1999. Effect of pitting corrosion on fatigue crack initiation and fatigue life. Engineering Fracture Mechanics, 62(4-5):425-444. 


[21] Ruiz, J., Elices, M., 1997. The role of environmental exposure in the fatigue behavior of an aluminum alloy. Corrosion Science, 39(12):2117-2141. 


[22] Sriraman, M.R., Pidaparti, R.M., 2010. Crack initiation life of materials under combined pitting corrosion and cyclic loading. Journal of Materials Engineering and Performance, 19(1):7-12. 


[23] Turnbull, A., McCartney, L.N., Zhou, S., 2006. Modelling of the evolution of stress corrosion cracks from corrosion pits. Scripta Materialia, 54(4):575-578. 


[24] Turnbull, A., McCartney, L.N., Zhou, S., 2006. A model to predict the evolution of pitting corrosion and the pit-to-crack transition incorporating statistically distributed input parameters. Corrosion Science, 48(8):2084-2105. 


[25] Valor, A., Caleyo, F., Alfonso, L., Rivas, D., Hallen, J.M., 2007. Stochastic modeling of pitting corrosion: A new model for initiation and growth of multiple corrosion pits. Corrosion Science, 49(2):559-579. 


[26] Wang, H., Li, Z.H., 2004. Stability and shrinkage of a cavity in stressed grain. Journal of Applied Physics, 95(11):6025-6031. 


[27] Wang, H., Li, Z.H., 2004. The three-dimensional analysis for diffusive shrinkage of a grain-boundary void in stressed solid. Journal of Materials Science, 39(10):3425-3432. 


[28] Wang, Q.Y., Pidaparti, R.M., Palakal, M.J., 2001. Comparative study of corrosion-fatigue in aircraft materials. AIAA Journal, 39(2):325-330. 

[29] Wei, R.P., 2001. A model for particle-induced pit growth in aluminum alloys. Scripta Materialia, 44(11):2647-2652. 


[30] Zupanc, U., Grumb, J., 2010. Effect of pitting corrosion on fatigue performance of shot-peened aluminium alloy 7075-T651. Journal of Materials Processing Technology, 210(9):1197-1202. 



Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2023 Journal of Zhejiang University-SCIENCE