References
[1] Bhuiyan, M.S., Mutoh, Y., Murai, T., Iwakami, S., 2008. Corrosion fatigue behavior of extruded magnesium alloy AZ61 under three different corrosive environments.
International Journal of Fatigue, 30(10-11):1756-1765.

[2] Chen, G.S., Wan, K.C., Gao, M., Harlow, D.G., Wei, R.P., 1996. Transition from pitting to fatigue crack growth-modeling of corrosion fatigue crack nucleation in a 2024-T3 aluminum alloy.
Materials Science and Engineering: A, 219(1-2):126-132.

[3] Codaro, E.N., Nakazato, R.Z., Horovistiz, A.L., Ribeiro, L.M.F., Ribeiro, R.B., Hein, L.R.O., 2002. An image processing method for morphological characterization and pitting corrosion evaluation.
Materials Science and Engineering: A, 334(1-2):298-306.

[4] Ebara, R., 2007. Corrosion fatigue crack initiation in 12% chromium stainless steel.
Materials Science and Engineering: A, 468-470:109-113.

[5] Ernst, P., Laycock, N.J., Moayed, M.H., Newman, R.C., 1997. The mechanism of lacy cover formation in pitting.
Corrosion Science, 39(6):1133-1136.

[6] Eshelby, J.D., 1957. The determination of the elastic field of an ellipsoidal inclusion, and related problems.
Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences, 241(1226):376-396.

[7] Ghali, E., Dietzel, W., 2004. Testing of general and localized corrosion of magnesium alloys: a critical review.
Journal of Materials Engineering and Performance, 13(1):7-23.

[8] Harlow, D.G., Wei, R.P., 1994. Probability approach for prediction of corrosion and corrosion fatigue life.
AIAA Journal, 32(10):2073-2082.
[9] Harlow, D.G., Wei, R.P., 1998. A probability model for the growth of corrosion pits in aluminum alloys induced by constituent particles.
Engineering Fracture Mechanics, 59(3):305-325.

[10] Harlow, D.G., Wei, R.P., 2001. Probability modeling and statistical analysis of damage in the lower wing skins of two retired B-707 aircraft.
Fatigue & Fracture of Engineering Materials & Structures, 24(8):523-535.

[11] Ishihara, S., Saka, S., Nan, Z.Y., Goshima, T., Sunada, S., 2006. Prediction of corrosion fatigue lives of aluminium alloy on the basis of corrosion pit growth law.
Fatigue & Fracture of Engineering Materials & Structures, 29(6):472-480.

[12] Ishihara, S., Nan, Z.Y., McEvily, A.J., Goshima, T., Sunada, S., 2008. On the initiation and propagation behavior of corrosion pits during corrosion fatigue process of industrial pure aluminum.
International Journal of Fatigue, 30(9):1659-1668.

[13] Ishihara, S., Namito, T., Notoya, H., Okada, A., 2010. The corrosion fatigue resistance of an electrolytically-plated magnesium alloy.
International Journal of Fatigue, 32(8):1299-1305.

[14] Kondo, Y., 1987. Prediction method of corrosion fatigue crack initiation life based on corrosion pit growth mechanism.
Transactions of the Japan Society of Mechanical Engineers Series A, 53(495):1983-1987.
[15] Liao, C.M., Wei, R.P., 1999. Galvanic coupling of model alloys to aluminum—a foundation for understanding particle-induced pitting in aluminum alloys.
Electrochimica Acta, 45(6):881-888.

[16] Ma, J., Zhang, B., Wang, J., Wang, G., Han, E.H., Ke, W., 2010. Anisotropic 3D growth of corrosion pits initiated at MnS inclusions for A537 steel during corrosion fatigue.
Corrosion Science, 52(9):2867-2877.

[17] Palin-Luc, T., Perez-Mora, R., Bathias, C., Dominguez, G., Paris, P.C., Arana, J.L., 2010. Fatigue crack initiation and growth on a steel in the very high cycle regime with sea water corrosion.
Engineering Fracture Mechanics, 77(11):1953-1962.

[18] Perkins, K.M., Bache, M.R., 2005. Corrosion fatigue of a 12% Cr low pressure turbine blade steel in simulated service environments.
International Journal of Fatigue, 27(10-12):1499-1508.

[19] Rajasankar, J., Iyer, N.R., 2006. A probability-based model for growth of corrosion pits in aluminium alloys.
Engineering Fracture Mechanics, 73(5):553-570.

[20] Rokhlin, S.I., Kim, J.Y., Nagy, H., Zoofan, B., 1999. Effect of pitting corrosion on fatigue crack initiation and fatigue life.
Engineering Fracture Mechanics, 62(4-5):425-444.

[21] Ruiz, J., Elices, M., 1997. The role of environmental exposure in the fatigue behavior of an aluminum alloy.
Corrosion Science, 39(12):2117-2141.

[22] Sriraman, M.R., Pidaparti, R.M., 2010. Crack initiation life of materials under combined pitting corrosion and cyclic loading.
Journal of Materials Engineering and Performance, 19(1):7-12.

[23] Turnbull, A., McCartney, L.N., Zhou, S., 2006. Modelling of the evolution of stress corrosion cracks from corrosion pits.
Scripta Materialia, 54(4):575-578.

[24] Turnbull, A., McCartney, L.N., Zhou, S., 2006. A model to predict the evolution of pitting corrosion and the pit-to-crack transition incorporating statistically distributed input parameters.
Corrosion Science, 48(8):2084-2105.

[25] Valor, A., Caleyo, F., Alfonso, L., Rivas, D., Hallen, J.M., 2007. Stochastic modeling of pitting corrosion: A new model for initiation and growth of multiple corrosion pits.
Corrosion Science, 49(2):559-579.

[26] Wang, H., Li, Z.H., 2004. Stability and shrinkage of a cavity in stressed grain.
Journal of Applied Physics, 95(11):6025-6031.

[27] Wang, H., Li, Z.H., 2004. The three-dimensional analysis for diffusive shrinkage of a grain-boundary void in stressed solid.
Journal of Materials Science, 39(10):3425-3432.

[28] Wang, Q.Y., Pidaparti, R.M., Palakal, M.J., 2001. Comparative study of corrosion-fatigue in aircraft materials.
AIAA Journal, 39(2):325-330.
[29] Wei, R.P., 2001. A model for particle-induced pit growth in aluminum alloys.
Scripta Materialia, 44(11):2647-2652.

[30] Zupanc, U., Grumb, J., 2010. Effect of pitting corrosion on fatigue performance of shot-peened aluminium alloy 7075-T651.
Journal of Materials Processing Technology, 210(9):1197-1202.

Open peer comments: Debate/Discuss/Question/Opinion
<1>