Full Text:   <3185>

Summary:  <2957>

CLC number: U271.91; O355; TP18

On-line Access: 2013-06-02

Received: 2013-04-05

Revision Accepted: 2013-07-09

Crosschecked: 2013-07-11

Cited: 4

Clicked: 9476

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2013 Vol.14 No.9 P.631-641


Multi-objective optimization design method of the high-speed train head*

Author(s):  Meng-ge Yu, Ji-ye Zhang, Wei-hua Zhang

Affiliation(s):  . State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, China

Corresponding email(s):   yumengge0627@163.com

Key Words:  High-speed train, Multi-objective optimization, Parametric model, Aerodynamic drag, Load reduction factor

Meng-ge Yu, Ji-ye Zhang, Wei-hua Zhang. Multi-objective optimization design method of the high-speed train head[J]. Journal of Zhejiang University Science A, 2013, 14(9): 631-641.

@article{title="Multi-objective optimization design method of the high-speed train head",
author="Meng-ge Yu, Ji-ye Zhang, Wei-hua Zhang",
journal="Journal of Zhejiang University Science A",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Multi-objective optimization design method of the high-speed train head
%A Meng-ge Yu
%A Ji-ye Zhang
%A Wei-hua Zhang
%J Journal of Zhejiang University SCIENCE A
%V 14
%N 9
%P 631-641
%@ 1673-565X
%D 2013
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1300109

T1 - Multi-objective optimization design method of the high-speed train head
A1 - Meng-ge Yu
A1 - Ji-ye Zhang
A1 - Wei-hua Zhang
J0 - Journal of Zhejiang University Science A
VL - 14
IS - 9
SP - 631
EP - 641
%@ 1673-565X
Y1 - 2013
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1300109

With the continuous improvement of the train speed, the dynamic environment of trains turns out to be aerodynamic domination. Solving the aerodynamic problems has become one of the key factors of the high-speed train head design. Given that the aerodynamic drag is a significant factor that restrains train speed and energy conservation, reducing the aerodynamic drag is thus an important consideration of the high-speed train head design. However, the reduction of the aerodynamic drag may increase other aerodynamic forces (moments), possibly deteriorating the operational safety of the train. The multi-objective optimization design method of the high-speed train head was proposed in this paper, and the aerodynamic drag and load reduction factor were set to be optimization objectives. The automatic multi-objective optimization design of the high-speed train head can be achieved by integrating a series of procedures into the multi-objective optimization algorithm, such as the establishment of 3D parametric model, the aerodynamic mesh generation, the calculation of the flow field around the train, and the vehicle system dynamics. The correlation between the optimization objectives and optimization variables was analyzed to obtain the most important optimization variables, and a further analysis of the nonlinear relationship between the key optimization variables and the optimization objectives was obtained. After optimization, the aerodynamic drag of optimized train was reduced by up to 4.15%, and the load reduction factor was reduced by up to 1.72%.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1] Aguilar Madeira, J.F., Rodrigues, H., Pina, H., 2005. Multi-objective optimization of structures topology by genetic algorithms. Advances in Engineering Software, 36(1):21-28. 

[2] Brockie, N.J.W., Baker, C.J., 1990. The aerodynamic drag of high speed train. Journal of Wind Engineering and Industrial Aerodynamics, 34(3):273-290. 

[3] Custdio, A.L., Madeira, J.F.A., Vaz, A.I.F., Vicente, L.N., 2011. Direct multisearch for multiobjective optimization. SIAM Journal on Optimization, 21(3):1109-1140. 

[4] Custdio, A.L., Emmerich, M., Maderia, J.F.A., 2012. Recent developments in derivative-free multiobjective optimization. Computational Technology Reviews, 5:1-30. 

[5] Deb, K., Agrawal, S., Pratap, A., Meyarivan, T., 2002. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2):182-197. 

[6] Hemida, H., Krajnović, S., 2010. LES study of the influence of the nose shape and yaw angles on flow structures around trains. Journal of Wind Engineering and Industrial Aerodynamics, 98(1):34-46. 

[7] Ikeda, M., Suzuki, M., Yoshida, K., 2006. Study on optimization of panhead shape possessing low noise and stable aerodynamic characteristics. Quarterly Report of RTRI, 47(2):72-77. 

[8] Kikuchi, K., Tanaka, Y., Iida, M., Yamauchi, N., Yoshida, Y., Nakanishi, M., Takahashi, R., 2001. Countermeasures for reducing pressure variation due to train passage in open sections. Quarterly Report of RTRI, 42(2):77-82. 

[9] Ku, Y.C., Rho, J.H., Yun, S.H., Kwak, M.H., Kim, K.H., Kwon, H.B., Lee, D.H., 2010. Optimal cross-sectional area distribution of a high-speed train nose to minimize the tunnel micro-pressure wave. Structural and Multidisciplinary Optimization, 42(6):965-976. 

[10] Kwon, H.B., Jang, K.H., Kim, Y.S., Yee, K.J., Lee, D.H., 2001. Nose shape optimization of high-speed train for minimization of tunnel sonic boom. JSME International Journal Series C, Mechanical Systems, Machine Elements and Manufacturing, 44(3):890-899. 

[11] Lee, J., Kim, J., 2008. Approximate optimization of high-speed train nose shape for reducing micropressure wave. Structural and Multidisciplinary Optimization, 35(1):79-87. 

[12] Li, T., Zhang, J.Y., Zhang, W.H., 2013. A numerical approach to the interaction between airflow and a high-speed train subjected to crosswind. Journal of Zhejiang Universit-SCIENCE A (Applied Physics & Engineering), 14(7):482-493. 

[13] Maeda, T., Kinoshita, M., Kajiyama, H., Tanemoto, K., 1989. Aerodynamic drag of Shinkansen electric cars (series 0, series 200, series 100). Railway Technical Research Institute, Quarterly Report, 30(1):48-56. 

[14] Raghunathan, R.S., Kim, H.D., Setoguchi, T., 2002. Aerodynamics of high-speed railway train. Progress in Aerospace Sciences, 38(6-7):469-514. 

[15] Schetz, J.A., 2001. Aerodynamics of high-speed trains. Annual Review of Fluid Mechanics, 33(1):371-414. 

[16] Shao, X.M., Wan, J., Chen, D.W., Xiong, H.B., 2011. Aerodynamic modeling and stability analysis of a high-speed train under strong rain and crosswind condition. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 12(12):964-970. 

[17] Sun, Z.X., Song, J.J., An, Y.R., 2010. Optimization of the head shape of the CRH3 high speed train. Science China Technological Sciences, 53(12):3356-3364. 

[18] Suzuki, M., Ikeda, M., Yoshida, K., 2008. Study on numerical optimization of cross-sectional panhead shape for high-speed train. Journal of Mechanical Systems for Transportation and Logistics, 1(1):100-110. 

[19] Versteeg, H.K., Malalasekera, W., 2007.  An Introduction to Computational Fluid Dynamics. The Finite Volume Method. Prentice Hall,New Jersey, America :

[20] Yao, S.B., Guo, D.L., Yang, G.W., 2012. Three-dimensional aerodynamic optimization design of high-speed train nose based on GA-GRNN. Science China Technological Sciences, 55(11):3118-3130. 

[21] Zhou, A., Qu, B.Y., Li, H., Zhao, S.Z., Suganthan, P.N., Zhang, Q.F., 2011. Multiobjective evolutionary algorithms: A survey of the state of the art. Swarm and Evolutionary Computation, 1(1):32-49. 

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2022 Journal of Zhejiang University-SCIENCE