Full Text:   <11137>

Summary:  <2539>

CLC number: TK16

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2013-08-20

Cited: 0

Clicked: 7512

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2013 Vol.14 No.9 P.671-678

http://doi.org/10.1631/jzus.A1300198


Development of non-premixed porous inserted regenerative thermal oxidizer


Author(s):  Jun-chun Zhang, Le-ming Cheng, Cheng-hang Zheng, Zhong-yang Luo, Ming-jiang Ni

Affiliation(s):  . State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China

Corresponding email(s):   lemingc@zju.edu.cn

Key Words:  Porous media, Regenerative thermal oxidizer (RTO), Non-premixed CH4 combustion


Jun-chun Zhang, Le-ming Cheng, Cheng-hang Zheng, Zhong-yang Luo, Ming-jiang Ni. Development of non-premixed porous inserted regenerative thermal oxidizer[J]. Journal of Zhejiang University Science A, 2013, 14(9): 671-678.

@article{title="Development of non-premixed porous inserted regenerative thermal oxidizer",
author="Jun-chun Zhang, Le-ming Cheng, Cheng-hang Zheng, Zhong-yang Luo, Ming-jiang Ni",
journal="Journal of Zhejiang University Science A",
volume="14",
number="9",
pages="671-678",
year="2013",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1300198"
}

%0 Journal Article
%T Development of non-premixed porous inserted regenerative thermal oxidizer
%A Jun-chun Zhang
%A Le-ming Cheng
%A Cheng-hang Zheng
%A Zhong-yang Luo
%A Ming-jiang Ni
%J Journal of Zhejiang University SCIENCE A
%V 14
%N 9
%P 671-678
%@ 1673-565X
%D 2013
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1300198

TY - JOUR
T1 - Development of non-premixed porous inserted regenerative thermal oxidizer
A1 - Jun-chun Zhang
A1 - Le-ming Cheng
A1 - Cheng-hang Zheng
A1 - Zhong-yang Luo
A1 - Ming-jiang Ni
J0 - Journal of Zhejiang University Science A
VL - 14
IS - 9
SP - 671
EP - 678
%@ 1673-565X
Y1 - 2013
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1300198


Abstract: 
In this study, a porous inserted regenerative thermal oxidizer (PRTO) system was developed for a 125 kW industrial copper-melting furnace, due to its advantages of low NO x emissions and high radiant efficiency. Zirconium dioxide (ZrO2) ceramic foams were placed into the combustion zone of a regenerative thermal oxidizer (RTO). Different performance characteristics of the RTO and PRTO systems, including pressure drop, temperature distribution, emissions, and energy efficiency, were evaluated to study the effects of the porous inserts on non-premixed CH4 combustion. It was found that the PRTO system achieved a significant reduction in the NO x emission level and a fuel saving of approximately 30% compared to the RTO system. It is most suitable for a lean combustion process at an equivalence ratio <0.4 with NO x and CO emission levels within 0.002%–0.003% and 0.001%–0.002%, respectively.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

References

[1] Charoensuk, J., Lapirattanakun, A., 2011. On flame stability, temperature distribution and burnout of air-staged porous media combustor firing LPG with different porosity and excess air. Applied Thermal Engineering, 31(16):3125-3141. 


[2] Dobrego, K.V., Kozlov, I.M., Zhdanok, S.A., Gnesdilov, N.N., 2001. Modeling of diffusion filtration combustion radiative burner. International Journal of Heat and Mass Transfer, 44(17):3265-3272. 


[3] Howell, J.R., Hall, M.J., Ellzey, J.L., 1996. Combustion of hydrocarbon fuels within porous inert media. Progress in Energy and Combustion Science, 22(2):121-145. 


[4] Jugjai, S., Sawananon, A., 2004. The surface combustor-heater with cyclic flow reversal combustion embedded with water tube bank. Fuel, 83(17-18):2369-2379. 


[5] Kamal, M.M., Mohamad, A.A., 2005. Enhanced radiation output from foam burners operating with a nonpremixed flame. Combustion and Flame, 140(3):233-248. 


[6] Kamal, M.M., Mohamad, A.A., 2006. Combustion in porous media. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 220(5):487-508. 


[7] Li, G.N., Zhou, H., Cen, K.F., 2008. Emission characteristics and combustion instabilities in an oxy-fuel swirl-stabilized combustor. Journal of Zhejiang University-SCIENCE A, 9(11):1582-1589. 


[8] Masashi, K., Toshiaki, H., 1998. The Scientific and Technology of Combustion Highly Preheated Air. 27th Symposium (International) on Combustion/The Combustion Institute, 27(2):3135-3146. 


[9] Mathis, W.M., Ellzey, J.L., 2005. Flame stabilization, operating range, and emissions for a methane/air porous burner. Combustion Science and Technology, 177(5):1323-1338. 


[10] Michael, F., 2001. Low NO x combustion technologies for high temperature applications. Energy Conversion and Management, 42(15):1919-1935. 


[11] Mital, R., Gore, J.P., Viskanta, R., 1998. A radiation efficiency measurement procedure for gas-fired radiant burners. Experimental Heat Transfer, 11(1):3-21. 


[12] Muhad, R.M.N., Abdullah, M.Z., Mujeebu, M.A., Bakar, M.A.A., Zakaria, R., Mohamad, A.A., 2011. The development and performance analysis of partially premixed LPG porous medium combustor. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 33(13):1260-1270. 


[13] Mujeebu, M.A., Abdullah, M.Z., Bakar, M.A.A., Mohamad, A.A., Abdullah, M.K., 2009. Applications of porous media combustion technology–review. Applied Energy, 86(9):1365-1375. 


[14] Mujeebu, M.A., Abdullah, M.Z., Bakar, M.A.A., Mohamad, A.A., Muhad, R.M.N., Abdullah, M.K., 2009. Combustion in porous media and its applications–A comprehensive survey. Journal of Environmental Management, 90(8):2287-2312. 


[15] Mujeebu, M.A., Abdullah, M.Z., Bakar, M.A.A., Mohamad, A.A., 2011. A mesoscale premixed LPG burner with surface combustion in porous ceramic foam. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 34(1):9-18. 


[16] Wood, S., Harris, A.T., 2008. Porous burners for lean-burn applications. Progress in Energy and Combustion Science, 34(5):667-684. 


[17] Smucker, M.T., Ellzey, J.L., 2004. Computational and experimental study of a two-section porous burner. Combustion Science and Technology, 176(8):1171-1189. 


[18] Suzukawa, Y., Sugiyama, S., Hino, Y., Ishioka, M., Mori, I., 1997. Heat transfer improvement and NO x reduction by highly preheated air combustion. Energy Conversion and Management, 38(10-13):1061-1071. 


[19] Tarokh, A., Mohamad, A.A., 2009. Non-premixed CH4 Combustion in a Porous Media. , Proceedings of the ASME International Mechanical Engineering Congress & Exposition, Florida, USA, :

[20] Wang, G., Luo, D., Huang, H., 2011. Characteristics on Temperature Profiles of No-premixed Combustion in Porous Media. , Power and Energy Engineering Conference (APPEEC), Asia-Pacific, Wuhan, China, 1-4. :1-4. 



Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE