Full Text:   <3463>

Summary:  <1844>

CLC number: TU411.99

On-line Access: 2014-04-03

Received: 2013-08-22

Revision Accepted: 2014-02-16

Crosschecked: 2014-03-17

Cited: 3

Clicked: 7428

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2014 Vol.15 No.4 P.241-254


Undrained anisotropy and non-coaxial behavior of clayey soil under principal stress rotation*

Author(s):  Jian Zhou, Jia-jia Yan, Zheng-yi Liu, Xiao-nan Gong

Affiliation(s):  . Research Center of Coastal and Urban Geotechnical Engineering, Zhejiang University, Hangzhou 310058, China

Corresponding email(s):   zjelim@zju.edu.cn

Key Words:  Non-coaxiality, Clay, Principal stress rotation, Anisotropy

Jian Zhou, Jia-jia Yan, Zheng-yi Liu, Xiao-nan Gong. Undrained anisotropy and non-coaxial behavior of clayey soil under principal stress rotation[J]. Journal of Zhejiang University Science A, 2014, 15(4): 241-254.

@article{title="Undrained anisotropy and non-coaxial behavior of clayey soil under principal stress rotation",
author="Jian Zhou, Jia-jia Yan, Zheng-yi Liu, Xiao-nan Gong",
journal="Journal of Zhejiang University Science A",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Undrained anisotropy and non-coaxial behavior of clayey soil under principal stress rotation
%A Jian Zhou
%A Jia-jia Yan
%A Zheng-yi Liu
%A Xiao-nan Gong
%J Journal of Zhejiang University SCIENCE A
%V 15
%N 4
%P 241-254
%@ 1673-565X
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1300277

T1 - Undrained anisotropy and non-coaxial behavior of clayey soil under principal stress rotation
A1 - Jian Zhou
A1 - Jia-jia Yan
A1 - Zheng-yi Liu
A1 - Xiao-nan Gong
J0 - Journal of Zhejiang University Science A
VL - 15
IS - 4
SP - 241
EP - 254
%@ 1673-565X
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1300277

In this study, a series of undrained tests were conducted on both intact and reconstituted clay using an automatic hollow cylinder apparatus. Monotonic shearing tests with fixed principal stress directions were carried out, pure and cyclic principal stress rotation tests were also performed. The non-coaxiality, defined as the non-coincidence of the principal plastic strain increment direction and the corresponding principal stress direction, of clayey soil was studied experimentally. The effects of the intermediate principal stress, shear stress level, and inherent anisotropy were highlighted. Clear non-coaxiality was observed during pure principal stress rotation, in both intact and reconstituted clay. The influence of the intermediate principal stress parameter, shear stress level, and inherent anisotropy on the non-coaxial behavior of the clayey soil was found to be insignificant when compared with the sand. The non-coaxial behavior of the clayey soil depended more on the stress paths. Under undrained conditions, the contribution of elastic strain to the direction of the total principal strain increment cannot be ignored.




Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1] Cai, Y.Y., 2010.  An Experimental Study of Non-coaxial Soil Behavior using Hollow Cylinder Testing. PhD Thesis, University of Nottingham,Nottingham, UK :

[2] Cai, Y.Y., Yu, H.S., Wanatowski, D., 2013. Noncoaxial behavior of sand under various stress paths. Journal of Geotechnical and Geoenvironmental Engineering, 139(8):1381-1395. 

[3] Gutierrez, M., Ishihara, K., 2000. Non-coaxiality and energy dissipation in granular materials. Soils and Foundations, 40(2):49-59. 

[4] Gutierrez, M., Ishihara, K., Towhata, I., 1991. Flow theory for sand during rotation of principal stress direction. Soils and Foundations, 31(4):121-132. 

[5] Hight, D.W., Gens, A., Symes, M.J., 1983. The development of a new hollow cylinder apparatus for investigation the effects of principal stress rotation in soils. Geotechnique, 33(4):355-383. 

[6] Hong, W., Lade, P., 1989. Strain increment and stress directions in torsion shear tests. Journal of Geotechnical Engineering, 115(10):1388-1401. 

[7] Kumruzzaman, M., Yin, J.H., 2010. Influences of principal stress direction and intermediate principal stress on the stress-strain-strength behaviour of completely decomposed granite. Canadian Geotechnical Journal, 47(2):164-179. 

[8] Lade, P.V., Kirkgard, M.M., 2000. Effects of stress rotation and changes of b-values on cross-anisotropic behavior of natural, K 0-consolidated soft clay. Soils and Foundations, 40(6):93-105. 

[9] Lade, P.V., Nam, J., Hong, W.P., 2009. Interpretation of strains in torsion shear tests. Computers and Geotechnics, 36(1-2):211-225. 

[10] Li, X., Yu, H.S., 2013. Micromechanics of deformation non-coaxiality in granular materials. , Proceedings of Powders and Grains, 1214-1217. :1214-1217. 

[11] Li, X., Yu, H.S., 2013. On the stress-force-fabric relationship for granular materials. International Journal of Solids and Structures, 50(9):1285-1302. 

[12] Miura, K., Miura, S., Toki, S., 1986. Deformation behavior of anisotropic dense sand under principal stress axes rotation. Soils and Foundations, 26(1):36-52. 

[13] Nakata, Y., Hyodo, M., Murata, H., 1997. Non-coaxiality of sand subjected to principal stress rotation. Deformation and Progressive Failure in Geomechanics, Pergamon Press,:265-270. 

[14] Ohkawa, H., Kuwano, J., Nakada, T., 2011. Yielding characteristic and non-coaxiality of Toyoura sand on p’-constant shear stress plane. Soils and Foundations, 51(1):179-190. 

[15] Pradel, D., Ishihara, K., Gutierrez, M., 1990. Yielding and flow of sand under principal stress axes rotation. Soils and Foundations, 30(1):87-99. 

[16] Roscoe, K.H., Bassett, R.H., Cole, E.R.L., 1967. Principal axes observed during simple shear of a sand. , Proceedings of the 4th European Conference on Soil Mechanics and Geotechinical Engineering, Oslo, Norway, 231-237. :231-237. 

[17] Sãyao, A., Vaid, Y.P., 1996. Effect of intermediate principal stress on the deformation response of sand. Canadian Geotechnical Journal, 33(5):822-828. 

[18] Shen, Y., 2007.  Experimental Study on Effect of Variation of Principal Stress Orientation on Undisturbed Soft Clay. PhD Thesis, (in Chinese), Zhejiang University,Hangzhou, China :

[19] Symes, M.J., Gens, A., Hight, D.W., 1984. Undrained anisotropy and principal stress rotation in saturated sand. Gotechnique, 34(1):11-27. 

[20] Symes, M.J., Gens, A., Hight, D.W., 1988. Drained principal stress rotation in saturated sand. Gotechnique, 38(1):59-81. 

[21] Tong, Z., Zhang, J., Yu, Y., 2010. Drained deformation behavior of anisotropic sands during cyclic rotation of principal stress axes. Journal of Geotechnical and Geoenvironmental Engineering, 136(11):1509-1518. 

[22] Wong, R.K.S., Arthur, J.R.F., 1986. Sand sheared by stresses with cyclic variations in direction. Gotechnique, 36(2):215-226. 

[23] Yan, J.J., Zhou, J., Guan, L.B., 2013. Experimental study on non-coaxiality and influence factors of intact Hangzhou soft clay. Chinese Journal of Geotechnical Engineering, (in Chinese),35(1):96-102. 

[24] Yang, Y., Yu, H.S., 2006. Application of a non-coaxial soil model in shallow foundations. Geomechanics and Geoengineering, 1(2):139-150. 

[25] Yu, H.S., Yuan, X., 2006. On a class of non-coaxial plasticity models for granular soils. Proceedings of the Royal Society A: Mathematical, Physical & Engineering Sciences, 462(2067):725-748. 

[26] Zheng, H.B., 2011.  Experimental Study of Reconstituted Clay and Intact Clay under Principal Stress Rotation. MS Thesis, (in Chinese), Zhejiang University,Hangzhou, China :

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2023 Journal of Zhejiang University-SCIENCE