CLC number: TU411.99
On-line Access: 2014-04-03
Received: 2013-08-22
Revision Accepted: 2014-02-16
Crosschecked: 2014-03-17
Cited: 3
Clicked: 7428
Jian Zhou, Jia-jia Yan, Zheng-yi Liu, Xiao-nan Gong. Undrained anisotropy and non-coaxial behavior of clayey soil under principal stress rotation[J]. Journal of Zhejiang University Science A, 2014, 15(4): 241-254.
@article{title="Undrained anisotropy and non-coaxial behavior of clayey soil under principal stress rotation",
author="Jian Zhou, Jia-jia Yan, Zheng-yi Liu, Xiao-nan Gong",
journal="Journal of Zhejiang University Science A",
volume="15",
number="4",
pages="241-254",
year="2014",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1300277"
}
%0 Journal Article
%T Undrained anisotropy and non-coaxial behavior of clayey soil under principal stress rotation
%A Jian Zhou
%A Jia-jia Yan
%A Zheng-yi Liu
%A Xiao-nan Gong
%J Journal of Zhejiang University SCIENCE A
%V 15
%N 4
%P 241-254
%@ 1673-565X
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1300277
TY - JOUR
T1 - Undrained anisotropy and non-coaxial behavior of clayey soil under principal stress rotation
A1 - Jian Zhou
A1 - Jia-jia Yan
A1 - Zheng-yi Liu
A1 - Xiao-nan Gong
J0 - Journal of Zhejiang University Science A
VL - 15
IS - 4
SP - 241
EP - 254
%@ 1673-565X
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1300277
Abstract: In this study, a series of undrained tests were conducted on both intact and reconstituted clay using an automatic hollow cylinder apparatus. Monotonic shearing tests with fixed principal stress directions were carried out, pure and cyclic principal stress rotation tests were also performed. The non-coaxiality, defined as the non-coincidence of the principal plastic strain increment direction and the corresponding principal stress direction, of clayey soil was studied experimentally. The effects of the intermediate principal stress, shear stress level, and inherent anisotropy were highlighted. Clear non-coaxiality was observed during pure principal stress rotation, in both intact and reconstituted clay. The influence of the intermediate principal stress parameter, shear stress level, and inherent anisotropy on the non-coaxial behavior of the clayey soil was found to be insignificant when compared with the sand. The non-coaxial behavior of the clayey soil depended more on the stress paths. Under undrained conditions, the contribution of elastic strain to the direction of the total principal strain increment cannot be ignored.
Open peer comments: Debate/Discuss/Question/Opinion
<1>