References
[1] Akhilesh, R., Narasimhan, A., Balaji, C., 2005. Method to improve geometry for heat transfer enhancement in PCM composite heat sink.
International Journal of Heat and Mass Transfer, 48(13):2759-2770.

[2] Alawadhi, E.M., Amon, C.H., 2003. PCM thermal control unit for portable electronic devices: experimental and numerical studies.
IEEE Transactions on Components and Packaging Technologies, 26(1):116-125.

[3] Al Hallaj, S., Selman, J.R., 2000. A novel thermal management system for electric vehicle batteries using phase-change material.
Journal of the Electrochemical Society, 147(9):3231-3236.

[4] Baby, R., Balaji, C., 2012. Experimental investigations on phase change material based finned heat sinks for electronic equipment cooling.
International Journal of Heat and Mass Transfer, 55(5-6):1642-1649.

[5] Duan, X., Naterer, G.F., 2010. Heat transfer in phase change materials for thermal management of electric vehicle battery modules.
International Journal of Heat and Mass Transfer, 53(23-24):5176-5182.

[6] El Omari, K., Kousksou, T., Guer, Y.L., 2011. Impact of shape of container on natural convection and melting inside enclosures used for passive cooling.
Applied Thermal Engineering, 31(14-15):3022-3035.

[7] Etemoglu, A.B., 2007. A brief survey and economical analysis of air cooling for electronic equipments.
International Communications in Heat and Mass Transfer, 34(1):103-113.

[8] Evans, A.G., He, M.Y., Hutchinson, J.W., 2001. Temperature distribution in advanced power electronics systems and the effect of phase change materials on temperature suppression during power pulses.
Journal of Electronic Packaging, 123(3):211-217.

[9] Fan, L.W., Khodadadi, J.M., 2011. Thermal conductivity enhancement of phase change materials for thermal energy storage: a review.
Renewable and Sustainable Energy Reviews, 15(1):24-46.

[10] Fan, L.W., Xiao, Y.Q., Zeng, Y., 2013. Effects of melting temperature and the presence of internal fins on the performance of a phase change material (PCM)-based heat sink.
International Journal of Thermal Sciences, 70:114-126.

[11] Fan, L.W., Khodadadi, J.M., Pesaran, A.A., 2013. A parametric study on thermal management of an air-cooled lithiumion battery module for plug-in hybrid electric vehicles.
Journal of Power Sources, 238:301-312.

[12] Faraji, M., El Qarnia, H., 2009. Passive cooling of protruding electronic components by latent heat of fusion storage.
Journal of Electronic Packaging, 131(2):021011

[13] Fok, S.C., Shen, W., Tan, F.L., 2010. Cooling of portable hand-held electronic devices using phase change materials in finned heat sinks.
International Journal of Thermal Sciences, 49(1):109-117.

[14] Garimella, S.V., 2006. Advances in mesoscale thermal management technologies for microelectronics.
Microelectronics Journal, 37(11):1165-1185.

[15] Hatakeyama, T., Ishizuka, M., Takakuwa, S., 2011. Experimental and thermal network study on the performance of a pins studded phase change materials in electronic device cooling.
Journal of Thermal Science and Technology, 6(1):164-177.

[16] Hodes, M., Weinstein, R.D., Pence, S.J., 2002. Transient thermal management of a handset using phase change material (PCM).
Journal of Electronic Packaging, 124(4):419-426.

[17] Hosseinizadeh, S.F., Tan, F.L., Moosania, S.M., 2011. Experimental and numerical studies on performance of PCM-based heat sink with different configurations of internal fins.
Applied Thermal Engineering, 31(17-18):3827-3838.

[18] Jaworski, M., 2012. Thermal performance of heat spreader for electronics cooling with incorporated phase change material.
Applied Thermal Engineering, 35:212-219.

[19] Kamkari, B., Shokouhmand, H., Bruno, F., 2014. Experimental investigation of the effect of inclination angle on convection-driven melting of phase change material in a rectangular enclosure.
International Journal of Heat and Mass Transfer, 72:186-200.

[20] Kandasamy, R., Wang, X.Q., Mujumdar, A.S., 2007. Application of phase change materials in thermal management of electronics.
Applied Thermal Engineering, 27(17-18):2822-2832.

[21] Kandasamy, R., Wang, X.Q., Mujumdar, A.S., 2008. Transient cooling of electronics using phase change material (PCM)-based heat sinks.
Applied Thermal Engineering, 28(8-9):1047-1057.

[22] Kizilel, R., Lateef, A., Sabbah, R., 2008. Passive control of temperature excursion and uniformity in high-energy Li-ion battery packs at high current and ambient temperature.
Journal of Power Sources, 183(1):370-375.

[23] Kizilel, R., Sabbah, R., Selman, J.R., 2009. An alternative cooling system to enhance the safety of Li-ion battery packs.
Journal of Power Sources, 194(2):1105-1112.

[24] Krishnan, S., Garimella, S.V., 2004. Analysis of a phase change energy storage system for pulsed power dissipation.
IEEE Transactions on Components and Packaging Technologies, 27(1):191-198.

[25] Krishnan, S., Garimella, S.V., Kang, S.S., 2005. A novel hybrid heat sink using phase change materials for transient thermal management of electronics.
IEEE Transactions on Components and Packaging Technologies, 28(2):281-289.

[26] Mills, A., Al-Hallaj, S., 2005. Simulation of passive thermal management system for lithium-ion battery packs.
Journal of Power Sources, 141(2):307-315.

[27] Nayak, K.C., Saha, S.K., Srinivasan, K., 2006. A numerical model for heat sinks with phase change materials and thermal conductivity enhancers.
International Journal of Heat and Mass Transfer, 49(11-12):1833-1844.

[28] Rao, Z., Wang, S., 2011. A review of power battery thermal energy management.
Renewable and Sustainable Energy Reviews, 15(9):4554-4571.

[29] Rao, Z., Wang, S., Zhang, G., 2011. Simulation and experiment of thermal energy management with phase change material for ageing LiFePO
4 power battery.
Energy Conversion and Management, 52(12):3408-3414.

[30] Sabbah, R., Kizilel, R., Selman, J.R., 2008. Active (air-cooled) vs. passive (phase change material) thermal management of high power lithium-ion packs: limitations of temperature rise and uniformity of temperature distribution.
Journal of Power Sources, 182(2):630-638.

[31] Saha, S.K., Dutta, P., 2010. Heat transfer correlations for PCM-based heat sinks with plate fins.
Applied Thermal Engineering, 30(16):2485-2491.

[32] Saha, S.K., Dutta, P., 2011. Effect of melt convection on the optimum thermal design of heat sinks with phase change material.
Journal of Enhanced Heat Transfer, 18(3):249-259.

[33] Saha, S.K., Dutta, P., 2012. Thermal management of electronics using PCM-based heat sink subjected to cyclic heat load.
IEEE Transactions on Components, Packaging and Manufacturing Technology, 2(3):464-473.

[34] Saha, S.K., Srinivasan, K., Dutta, P., 2008. Studies on optimum distribution of fins in heat sinks filled with phase change materials.
Journal of Heat Transfer, 130(3):034505

[35] Setoh, G., Tan, F.L., Fok, S.C., 2010. Experimental studies on the use of a phase change material for cooling mobile phones.
International Communications in Heat and Mass Transfer, 37(9):1403-1410.

[36] Shatikian, V., Ziskind, G., Letan, R., 2005. Numerical investigation of a PCM-based heat sink with internal fins.
International Journal of Heat and Mass Transfer, 48(17):3689-3706.

[37] Shatikian, V., Ziskind, G., Letan, R., 2008. Numerical investigation of a PCM-based heat sink with internal fins: constant heat flux.
International Journal of Heat and Mass Transfer, 51(5-6):1488-1493.

[38] Tan, F.L., Tso, C.P., 2004. Cooling of mobile electronic devices using phase change materials.
Applied Thermal Engineering, 24(2-3):159-169.

[39] Tan, F.L., Fok, S.C., 2012. Numerical investigation of phase change material-based heat storage unit on cooling of mobile phone.
Heat Transfer Engineering, 33(6):494-504.

[40] Vesligaj, M.J., Amon, C.H., 1999. Transient thermal management of temperature fluctuations during time varying workloads on portable electronics.
IEEE Transactions on Components and Packaging Technologies, 22(4):541-550.

[41] Wang, X.Q., Mujumdar, A.S., Yap, C., 2007. Effect of orientation for phase change material (PCM)-based heat sinks for transient thermal management of electronic components.
International Communications in Heat and Mass Transfer, 34(7):801-808.

[42] Wang, Y.H., Yang, Y.T., 2011. Three-dimensional transient cooling simulations of a portable electronic device using PCM (phase change materials) in multi-fin heat sink.
Energy, 36(8):5214-5224.

[43] Webb, B.W., Viskanta, R., 1986. Natural-convection-dominated melting heat transfer in an inclined rectangular enclosure.
International Journal of Heat and Mass Transfer, 29(2):183-192.

[44] Yang, Y.T., Wang, Y.H., 2012. Numerical simulation of three-dimensional transient cooling application on a portable electronic device using phase change material.
International Journal of Thermal Sciences, 51:155-162.

[45] Ye, W., Zhu, D., Wang, N., 2012. Effect of the inclination angles on thermal energy storage in a quadrantal cavity.
Journal of Thermal Analysis and Calorimetry, 110(3):1487-1492.

[46] Yoo, D.W., Joshi, Y.K., 2004. Energy efficient thermal management of electronic components using solid-liquid phase change materials.
IEEE Transactions on Device and Materials Reliability, 4(4):641-649.

Open peer comments: Debate/Discuss/Question/Opinion
<1>