Full Text:   <3453>

Summary:  <1834>

CLC number: TB559; O347

On-line Access: 2016-03-07

Received: 2015-06-21

Revision Accepted: 2015-10-13

Crosschecked: 2016-02-15

Cited: 1

Clicked: 4395

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Xiao-wei Zhang

http://orcid.org/0000-0002-3995-5950

Zhi-feng Tang

http://orcid.org/0000-0001-5591-8175

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2016 Vol.17 No.3 P.215-229

http://doi.org/10.1631/jzus.A1500184


Excitation of axisymmetric and non-axisymmetric guided waves in elastic hollow cylinders by magnetostrictive transducers


Author(s):  Xiao-wei Zhang, Zhi-feng Tang, Fu-zai Lv, Xiao-hong Pan

Affiliation(s):  Institute of Modern Manufacture Engineering, Zhejiang University, Hangzhou 310027, China; more

Corresponding email(s):   tangzhifeng@zju.edu.cn

Key Words:  Guided waves, Hollow cylinder, Normal mode expansion (NME), Magnetostriction


Xiao-wei Zhang, Zhi-feng Tang, Fu-zai Lv, Xiao-hong Pan. Excitation of axisymmetric and non-axisymmetric guided waves in elastic hollow cylinders by magnetostrictive transducers[J]. Journal of Zhejiang University Science A, 2016, 17(3): 215-229.

@article{title="Excitation of axisymmetric and non-axisymmetric guided waves in elastic hollow cylinders by magnetostrictive transducers",
author="Xiao-wei Zhang, Zhi-feng Tang, Fu-zai Lv, Xiao-hong Pan",
journal="Journal of Zhejiang University Science A",
volume="17",
number="3",
pages="215-229",
year="2016",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1500184"
}

%0 Journal Article
%T Excitation of axisymmetric and non-axisymmetric guided waves in elastic hollow cylinders by magnetostrictive transducers
%A Xiao-wei Zhang
%A Zhi-feng Tang
%A Fu-zai Lv
%A Xiao-hong Pan
%J Journal of Zhejiang University SCIENCE A
%V 17
%N 3
%P 215-229
%@ 1673-565X
%D 2016
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1500184

TY - JOUR
T1 - Excitation of axisymmetric and non-axisymmetric guided waves in elastic hollow cylinders by magnetostrictive transducers
A1 - Xiao-wei Zhang
A1 - Zhi-feng Tang
A1 - Fu-zai Lv
A1 - Xiao-hong Pan
J0 - Journal of Zhejiang University Science A
VL - 17
IS - 3
SP - 215
EP - 229
%@ 1673-565X
Y1 - 2016
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1500184


Abstract: 
Ultrasonic guided waves have been successfully applied in nondestructive evaluation (NDE) and structural health monitoring (SHM) of pressure vessels and pipelines due to their advantages, such as long detection range and high inspection efficiency. Compared with other ultrasonic guided wave actuators, magnetostrictive transducers are more cost-effective, involve simpler fabrication process, and have higher possible transduction efficiency. The normal mode expansion (NME) method is adopted to analyze the forced response and perturbation analysis of elastic hollow cylinders with respect to magnetostrictive loadings, including partial loading, axial array loading, and circular array loading. The phase velocity and frequency spectra of axisymmetric/non-axisymmetric guided waves excited by magnetostrictive transducers are analyzed. The theoretically predicted trends are verified by finite element numerical simulations and experiments.

Using the Normal Mode Expansion method, this manuscript (MS) analyzed the forced response and perturbation analysis of elastic hollow cylinders with respect to magnetostrictive loading. Finite element simulations and experiments verified the theoretical results. Some interesting results were found, such as "Magnetostrictive partial loading is able to excite guided wave modes in the same family, but has poor phase velocity and frequency selectivity."

弹性空心圆柱体中对称与非对称导波的磁致伸缩换能器激励

目的:超声导波是一种有潜力的无损检测方法,磁致伸缩换能器是一种重要的导波换能器。利用经典的简正模态展开法分析弹性空心圆柱体在磁致伸缩载荷下的激励响应,包括磁致伸缩局部载荷、轴向阵列载荷和圆周阵列载荷。空心圆柱体在磁致伸缩载荷作用下的扰动分析将为磁致伸缩换能器以及换能器阵的进一步发展提供理论依据。
创新点:1. 利用简正模态展开方法,讨论弹性空心圆柱体在磁致伸缩载荷作用下的扰动分析和激励响应;2. 通过数值仿真和试验研究,验证空心圆柱体在磁致伸缩局部载荷、轴向阵列载荷和圆周阵列载荷作用下不同的激励响应,得到有效的结论。
方法:1. 通过理论推导,构建典型磁致伸缩换能器数学模型(公式(15)和(17));2. 通过理论推导,建立弹性空心圆柱体在磁致伸缩局部载荷、轴向阵列载荷和圆周阵列载荷作用下的波源分析模型(公式(25~26)、(30~31)和(34~35)),求解得到典型载荷形式下的激励响应(图6~8和11~13);3. 通过仿真模拟和试验研究,对空心圆柱体在不同磁致伸缩载荷作用下的激励响应进行验证(图14~21)。
结论:1. 磁致伸缩局部载荷能够激励产生同一族的导波模态,但是不具有良好的频率选择性和相速度选择性,轴对称载荷仅能激励轴对称模态;2. 磁致伸缩轴向阵列载荷具有良好的频率选择性和相速度选择性,中心频率和中心相速度取决于阵列单元间距,对导波模态控制非常有益;3. 磁致伸缩圆周阵列载荷能够激励周向阶次为阵列单元数整数倍的导波模态。

关键词:导波;空心圆柱体;简正模态展开;磁致伸缩

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Alleyne, D.N., Cawley, P., 1996. The excitation of Lamb waves in pipes using dry-coupled piezoelectric transducers. Journal of Nondestructive Evaluation, 15(1):11-20.

[2]Auld, B.A., 1990. Acoustic Fields and Waves in Solids, Vol. 2. Krieger Publishing Company, Malabar, Florida, USA.

[3]Cho, S.H., Han, S.W., Park, C., et al., 2006. Noncontact torsional wave transduction in a rotating shaft using oblique magnetostrictive strips. Journal of Applied Physics, 100(10):104903.

[4]Ditri, J.J., Rose, J.L., 1992. Excitation of guided elastic wave modes in hollow cylinders by applied surface tractions. Journal of Applied Physics, 72(7):2589-2597.

[5]Ditri, J.J., Rose, J.L., Pilarski, A., 1993. Generation of guided waves in hollow cylinders by wedge and comb type transducers. In: Thompson, D.O., Chimenti, D.E. (Eds.), Review of Progress in Quantitative Nondestructive Evaluation. Springer US, New York, 12:211-218.

[6]Drozdz, M.B., 2008. Efficient Finite Element Modeling of Ultrasonic Wave in Elastic Media. PhD Thesis, Imperial College London, London, UK.

[7]Gazis, D.C., 1959. Three dimensional investigation of the propagation of waves in hollow circular cylinders. I. Analytical foundation. The Journal of the Acoustical Society of America, 31(5):568-573.

[8]Hay, T.R., Rose, J.L., 2002. Flexible PVDF comb transducers for excitation of axisymmetric guided waves in pipe. Sensors and Actuators A: Physical, 100(1):18-23.

[9]Hayashi, T., Kawashima, K., Sun, Z.Q., et al., 2005. Guided wave focusing mechanics in pipe. Journal of Pressure Vessel Technology, 127(3):317-321.

[10]Hirao, M., Ogi, H., 2003. EMATs for Science and Industry: Noncontacting Ultrasonic Measurements. Kluwer Academic, Boston, USA.

[11]Kim, Y.G., Moon, H.S., Park, K.J., et al., 2011. Generating and detecting torsional guided waves using magnetostrictive sensors of crossed coils. NDT & E International, 44(2):145-151.

[12]Kim, Y.Y., Park, C., Cho, S.H., et al., 2005. Torsional wave experiments with a new magnetostrictive transducer configuration. The Journal of the Acoustical Society of America, 117(6):3459-3468.

[13]Kwun, H., Bartels, K.A., 1998. Magnetostrictive sensor technology and its applications. Ultrasonics, 36(1-5):171-178.

[14]Lee, J.S., Kim, Y.Y., Cho, S.H., 2009. Beam-focused shear-horizontal wave generation in a plate by a circular magnetostrictive patch transducer employing a planar solenoid array. Smart Materials & Structures, 18(1):015009.

[15]Li, J., Rose, J.L., 2001a. Excitation and propagation of non-axisymmetric guided waves in a hollow cylinder. The Journal of the Acoustical Society of America, 109(2):457-464.

[16]Li, J., Rose, J.L., 2001b. Implementing guided wave mode control by use of a phased transducer array. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 48(3):761-768.

[17]Li, J., Rose, J.L., 2002. Angular-profile tuning of guided waves in hollow cylinders using a circumferential phased array. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 49(12):1720-1729.

[18]Luo, W., 2005. Ultrasonic Guided Waves and Wave Scattering in Viscoelastic Coated Hollow Cylinder. PhD Thesis, The Pennsylvania State University, State College, USA.

[19]Marty, P.N., 2002. Modelling of Ultrasonic Guided Wave Field Generated by Piezoelectric Transducers. PhD Thesis, Imperial College, London, UK.

[20]Marzani, A., 2008. Time-transient response for ultrasonic guided waves propagating in damped cylinders. International Journal of Solids and Structures, 45(25-26):6347-6368.

[21]Moreau, L., Velichko, A., Wilcox, P.D., 2012. Accurate finite element modelling of guided wave scattering from irregular defects. NDT & E International, 45(1):46-54.

[22]Mu, J., 2008. Guided Wave Propagation and Focusing in Viscoelastic Multilayered Hollow Cylinders. PhD Thesis, The Pennsylvania State University, State College, USA.

[23]Mu, J., Rose, J.L., 2008. Guided wave propagation and mode differentiation in hollow cylinders with viscoelastic coatings. The Journal of the Acoustical Society of America, 124(2):866-874.

[24]Philtron, J.H., Rose, J.L., 2014. Mode perturbation method for optimal guided wave mode and frequency selection. Ultrasonics, 54(7):1817-1824.

[25]Ribichini, R., 2011. Modelling of Electromagnetic Acoustic Transducers. PhD Thesis, Imperial College London, London, UK.

[26]Ribichini, R., Cegla, F., Nagy, P.B., et al., 2010. Quantitative modeling of the transduction of electromagnetic acoustic transducers operating on ferromagnetic media. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 57(12):2808-2817.

[27]Ribichini, R., Cegla, F., Nagy, P.B., et al., 2011. Study and comparison of different EMAT configurations for SH wave inspection. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 58(12):2571-2581.

[28]Ribichini, R., Cegla, F., Nagy, P.B., et al., 2012. The impact of magnetostriction on the transduction of normal bias field EMATs. NDT & E International, 51:8-15.

[29]Rose, J.L., 2014. Ultrasonic Guided Waves in Solid Media. Cambridge University Press, Cambridge, UK.

[30]Rose, J.L., Pelts, S.P., Quarry, M.J., 1998. A comb transducer model for guided wave NDE. Ultrasonics, 36(1-5):163-169.

[31]Shin, H.J., Rose, J.L., 1999. Guided waves by axisymmetric and non-axisymmetric surface loading on hollow cylinders. Ultrasonics, 37(5):355-363.

[32]Sun, Z.Q., Zhang, L., Rose, J.L., 2005. Flexural torsional guided wave mechanics and focusing in pipe. Journal of Pressure Vessel Technology, 127(4):471-478.

[33]Turcu, F.O., 2008. Development and Experimentation of Magnetostrictive Sensors for Inspection and Monitoring of Piping Systems. PhD Thesis, Università Di Pisa, Pisa, Italy.

[34]Wilcox, P.D., 2003. Omni-directional guided wave transducer arrays for the rapid inspection of large areas of plate structures. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 50(6):699-709.

[35]Zhang, L., 2005. Guided Wave Focusing Potential in Hollow Cylinders. PhD Thesis, The Pennsylvania State University, State College, USA.

[36]Zhang, X.W., Tang, Z.F., Lü, F.Z., 2014. Numerical simulation and experimental investigation on ultrasonic guided waves in multilayered pipes based on SAFE. Journal of Mechanical Engineering, 50(8):10-16.

[37]Zhu, W.H., 2001. A finite element analysis of the time-delay periodic ring arrays for guided wave generation and reception in hollow cylinders. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 48(5):1462-1470.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE