CLC number: O313; O32
On-line Access: 2017-07-04
Received: 2016-09-15
Revision Accepted: 2017-02-16
Crosschecked: 2017-06-12
Cited: 0
Clicked: 4716
Paweł Fritzkowski, Roman Starosta, Grażyna Sypniewska-Kamińska, Jan Awrejcewicz. Dynamics of a periodically driven chain of coupled nonlinear oscillators[J]. Journal of Zhejiang University Science A, 2017, 18(7): 497-510.
@article{title="Dynamics of a periodically driven chain of coupled nonlinear oscillators",
author="Paweł Fritzkowski, Roman Starosta, Grażyna Sypniewska-Kamińska, Jan Awrejcewicz",
journal="Journal of Zhejiang University Science A",
volume="18",
number="7",
pages="497-510",
year="2017",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1600628"
}
%0 Journal Article
%T Dynamics of a periodically driven chain of coupled nonlinear oscillators
%A Paweł Fritzkowski
%A Roman Starosta
%A Grażyna Sypniewska-Kamińska
%A Jan Awrejcewicz
%J Journal of Zhejiang University SCIENCE A
%V 18
%N 7
%P 497-510
%@ 1673-565X
%D 2017
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1600628
TY - JOUR
T1 - Dynamics of a periodically driven chain of coupled nonlinear oscillators
A1 - Paweł Fritzkowski
A1 - Roman Starosta
A1 - Grażyna Sypniewska-Kamińska
A1 - Jan Awrejcewicz
J0 - Journal of Zhejiang University Science A
VL - 18
IS - 7
SP - 497
EP - 510
%@ 1673-565X
Y1 - 2017
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1600628
Abstract: A 1D chain of coupled oscillators is considered, including the Duffing-type nonlinearity, viscous damping, and kinematic harmonic excitation. The equations of motion are presented in a non-dimensional form. The approximate equations for the vibrational amplitudes and phases are derived by means of the classical averaging method. A simple analysis of the resulting equations allows one to determine the conditions for the two basic synchronous steady-states of the system: the in-phase and anti-phase motions. The relations between the required excitation frequency and the natural frequencies of the abbreviated (linear) system are discussed. The validity of these predictions is examined by a series of numerical experiments. The effect of the model parameters on the rate of synchronization is analyzed. For the purpose of systematic numerical studies, the cross-correlation of time-series is used as a measure of the phase adjustment between particular oscillators. Finally, some essential issues that arise in case of the mechanical system with dry friction are indicated.
[1]Balanov, A., Janson, N., Postnov, D., et al., 2009. Synchronization: from Simple to Complex. Springer, Berlin, Germany.
[2]Belykh, V.N., Osipov, G.V., Kuckländer, N., et al., 2005. Automatic control of phase synchronization in coupled complex oscillators. Physica D: Nonlinear Phenomena, 200(1-2):81-104.
[3]Cash, J.R., 1983. The integration of stiff initial value problems in odes using modified extended backward differentiation formulate. Computers & Mathematics with Applications, 9(5):645-657.
[4]Cash, J.R., 2003. Efficient numerical methods for the solution of stiff initial-value problems and differential algebraic equations. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 459:797-815.
[5]Fritzkowski, P., Kamiński, H., 2009. Dynamics of a rope modeled as a discrete system with extensible members. Computational Mechanics, 44(4):473-480.
[6]Galvanetto, U., Bishop, S.R., Briseghella, L., 1995. Mechanical stick-slip vibrations. International Journal of Bifurcation and Chaos, 5(3):637-651.
[7]Hoffmann, N., Bieser, S., Gaul, L., 2004. Harmonic balance and averaging techniques for stick-slip limit-cycle determination in mode-coupling friction self-excited systems. Technische Mechanik, 24(3-4):185-197.
[8]Kryloff, N., Bogoliuboff, N., 1947. Introduction to Nonlinear Mechanics. Princeton University Press, Princeton, USA.
[9]Leine, R.I., van Campen, D.H., de Kraker, A., et al., 1998. Stick-slip vibrations induced by alternate friction models. Nonlinear Dynamics, 16(1):41-54.
[10]Mazzia, F., Magherini, C., 2003. Test Set for Initial Value Problem Solvers. Department of Mathematics, University of Bari, Italy.
[11]McLachlan, N.W., 1950. Ordinary Non-linear Differential Equations in Engineering and Physical Sciences. Oxford University Press, London, UK.
[12]Minorsky, N., 1947. Introduction to Non-linear Mechanics. Edwards Brothers, Ann Arbor, USA.
[13]Nayfeh, A.H., Mook, D.T., 1995. Nonlinear Oscillations. Wiley, New York, USA.
[14]Osipov, G.V., Kurths, J., Zhou, C., 2007. Synchronization in Oscillatory Networks. Springer, Berlin, Germany.
[15]Sanders, J.A., Verhulst, F., 1985. Averaging Methods in Nonlinear Dynamical Systems. Springer, New York, USA.
[16]van de Vrande, B.L., van Campen, D.H., de Kraker, A., 1999. An approximate analysis of dry-friction-induced stickslip vibratons by a smoothing procedure. Nonlinear Dynamics, 19(2):157-169.
Open peer comments: Debate/Discuss/Question/Opinion
<1>