Full Text:   <2606>

Summary:  <1727>

CLC number: 

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2018-01-15

Cited: 0

Clicked: 4632

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Shang-qing Liang

https://orcid.org/0000-0002-8205-3303

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2018 Vol.19 No.2 P.171-174

http://doi.org/10.1631/jzus.A1700142


Laser frequency locking with low pump field saturated absorption spectroscopy


Author(s):  Shang-qing Liang, Yun-fei Xu, Qiang Lin

Affiliation(s):  Institute of Optics, Department of Physics, Zhejiang University, Hangzhou 310027, China; more

Corresponding email(s):   qlin@zju.edu.cn

Key Words:  Saturated absorption spectroscopy, Low pump field


Share this article to: More <<< Previous Article|

Shang-qing Liang, Yun-fei Xu, Qiang Lin. Laser frequency locking with low pump field saturated absorption spectroscopy[J]. Journal of Zhejiang University Science A, 2018, 19(2): 171-174.

@article{title="Laser frequency locking with low pump field saturated absorption spectroscopy",
author="Shang-qing Liang, Yun-fei Xu, Qiang Lin",
journal="Journal of Zhejiang University Science A",
volume="19",
number="2",
pages="171-174",
year="2018",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1700142"
}

%0 Journal Article
%T Laser frequency locking with low pump field saturated absorption spectroscopy
%A Shang-qing Liang
%A Yun-fei Xu
%A Qiang Lin
%J Journal of Zhejiang University SCIENCE A
%V 19
%N 2
%P 171-174
%@ 1673-565X
%D 2018
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1700142

TY - JOUR
T1 - Laser frequency locking with low pump field saturated absorption spectroscopy
A1 - Shang-qing Liang
A1 - Yun-fei Xu
A1 - Qiang Lin
J0 - Journal of Zhejiang University Science A
VL - 19
IS - 2
SP - 171
EP - 174
%@ 1673-565X
Y1 - 2018
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1700142


Abstract: 
In recent years, many systems based on quantum effects have been applied to precision measurement. A laser pumped helium 4 absolute scalar atomic magnetometer which is carried by the Swarm satellite is used to measure the earth magnetic field intensity. China launched the first cold atomic clock in 2016, in which frequency stabilized laser systems were very important. A compact cold atom gravimeter was developed for field application. Most of these systems, which require frequency stabilized laser systems, are placed on moving platforms. The vibration of these platforms is an important noise source to the laser frequency because the long-term changes of adjustable parts may occur under the vibration condition.

用于激光锁频的低泵浦场饱和吸收光谱

目的:利用激光透过原子气室时的端面反射产生泵浦光,实现低泵浦场的饱和吸收光谱,提高饱和吸收光谱锁频方法对运动平台的适应性.
创新点:1. 在饱和吸收光谱中实现无需额外反射镜调节的泵浦光与探测光的重合方法; 2. 在饱和吸收光谱中实现强探测-弱泵浦的实验方式.
方法:1. 利用原子气室端面反射光作为泵浦光,实现低泵浦场的饱和吸收光谱装置(图1和2); 2. 研究实现低泵浦场的饱和吸收光谱所需的角度控制精度(图4); 3. 研究采用此方法的激光频率锁定效果(图5和6).
结论:1. 低泵浦场的饱和吸收光谱方法可以满足激光频率锁定的要求; 2. 低泵浦场的饱和吸收光谱装置相比传统装置,没有多余的可调节的反射镜,装置更加简洁,锁频效果受环境影响更小,对运动平台的适应性更强.

关键词:饱和吸收光谱;低泵浦场;长漂;运动平台

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Bidel Y, Carraz O, Charriere R, et al., 2013. Compact cold atom gravimeter for field applications. Applied Physics Letters, 102(14):25-61.

[2]Biesheuvel J, Noom DW, Salumbides EJ, et al., 2013. Widely tunable laser frequency offset lock with 30 GHz range and 5 THz offset. Optics Express, 21(12):14008-14016.

[3]Debs JE, Robins NP, Lance A, et al., 2008. Piezo-locking a diode laser with saturated absorption spectroscopy. Applied Optics, 47(28):5163-5166.

[4]Fratter I, Leger JM, Bertrand F, et al., 2016. Swarm absolute scalar magnetometers first in-orbit results. Acta Astronautica, 4:2465-2474.

[5]Li L, Qu QZ, Wang B, et al., 2016. Initial tests of a rubidium space cold atom clock. Chinese Physics Letters, 33(6):063201.

[6]Liu B, Chen C, Xia J, et al., 2013. Design and implementation of vibration isolation system for mobile doppler wind LIDAR. Journal of the Optical Society of Korea, 17(1):103-108.

[7]Martins WS, Grilo M, Brasileiro M, et al., 2010. Diode laser frequency locking using Zeeman effect and feedback in temperature. Applied Optics, 49(5):871-874.

[8]Wan JH, Liu C, Wang YH, 2016. Laser frequency locking based on the normal and abnormal saturated absorption spectroscopy of 87Rb. Chinese Physics B, 25(4):145-149.

[9]Yang G, Wang J, Zhan M, et al., 2010. Bichromatic laser frequency stabilization with Doppler effect and polarization spectroscopy. Chinese Optics Letters, 8(11):1095-1097.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE