Full Text:   <2542>

Summary:  <1729>

CLC number: TQ53

On-line Access: 2019-06-05

Received: 2019-01-24

Revision Accepted: 2019-04-22

Crosschecked: 2019-04-24

Cited: 0

Clicked: 4556

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Wei-juan Yang

https://orcid.org/0000-0003-4820-7302

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2019 Vol.20 No.6 P.447-457

http://doi.org/10.1631/jzus.A1900030


Simulation analysis of fracture process of slag deposits surrounding wall tubes during steam sootblowing


Author(s):  Lin-tao Shao, Jian-ping Kuang, Wei-juan Yang, Yu Zhang, Zhi-jun Zhou, Zhi-wen Xia, Zhi-hua Wang

Affiliation(s):  State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China; more

Corresponding email(s):   yangwj@zju.edu.cn

Key Words:  Sootblowing, Boiler, Numerical model, Cohesive zone method (CZM), Deposit fracture


Lin-tao Shao, Jian-ping Kuang, Wei-juan Yang, Yu Zhang, Zhi-jun Zhou, Zhi-wen Xia, Zhi-hua Wang. Simulation analysis of fracture process of slag deposits surrounding wall tubes during steam sootblowing[J]. Journal of Zhejiang University Science A, 2019, 20(6): 447-457.

@article{title="Simulation analysis of fracture process of slag deposits surrounding wall tubes during steam sootblowing",
author="Lin-tao Shao, Jian-ping Kuang, Wei-juan Yang, Yu Zhang, Zhi-jun Zhou, Zhi-wen Xia, Zhi-hua Wang",
journal="Journal of Zhejiang University Science A",
volume="20",
number="6",
pages="447-457",
year="2019",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1900030"
}

%0 Journal Article
%T Simulation analysis of fracture process of slag deposits surrounding wall tubes during steam sootblowing
%A Lin-tao Shao
%A Jian-ping Kuang
%A Wei-juan Yang
%A Yu Zhang
%A Zhi-jun Zhou
%A Zhi-wen Xia
%A Zhi-hua Wang
%J Journal of Zhejiang University SCIENCE A
%V 20
%N 6
%P 447-457
%@ 1673-565X
%D 2019
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1900030

TY - JOUR
T1 - Simulation analysis of fracture process of slag deposits surrounding wall tubes during steam sootblowing
A1 - Lin-tao Shao
A1 - Jian-ping Kuang
A1 - Wei-juan Yang
A1 - Yu Zhang
A1 - Zhi-jun Zhou
A1 - Zhi-wen Xia
A1 - Zhi-hua Wang
J0 - Journal of Zhejiang University Science A
VL - 20
IS - 6
SP - 447
EP - 457
%@ 1673-565X
Y1 - 2019
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1900030


Abstract: 
The slag deposited on the wall tubes of furnaces/boilers seriously reduces the heat transfer from the furnace to tubes and degrades the tubes by corrosion. During boiler operation, slag deposits are removed by sootblowers that blast the deposits with steam or air jets. In this study, we develop a novel numerical model using the cohesive zone method (CZM) and coupled Eulerian– Lagrangian (CEL) analysis to investigate the dynamics and mechanism of deposit fracture during sootblowing. Cohesive elements subject to the softening traction–separation relationship and evolution laws are embedded into the deposit model to describe crack formation during deposit breaking. The deposit cracking status is evaluated by extracting the scalar stiffness degradation variable from damaged cohesive elements. The dynamic process and mechanism of deposit fracture are analyzed and revealed in detail, particularly in terms of the destructive degree and fracture rate of the deposit model. The effects of the sootblowing steam pressure (0.9–1.8 MPa) on slag breaking, wall tube stress, and steam consumption are also investigated. sootblowing steam pressures over 1.2 MPa do not further benefit the sootblowing effect but adversely affect the wall tube lifetime.

I am familiar with cohesive zone fracture models and I believe this is an appropriate application and that the authors have done a good job of modeling fracture in boiler deposits.

蒸汽吹灰过程中水冷壁渣层破坏过程的模拟分析

目的:蒸汽吹灰是锅炉运行中常见的破坏水冷壁渣层的方法. 本文通过建立三维吹灰模型,模拟不同压力下吹灰过程中蒸汽射流和渣层破坏的动态变化过程,研究在渣层破坏过程中应力波的传播变化,得出条件合适的吹灰参数.
创新点:1. 通过内聚力单元法和耦合欧拉-拉格朗日法建立吹灰流程的三维数值模型,详细揭示渣层破坏的动力学过程,并对蒸汽射流的扩散和应力波在渣层中的传播进行全过程分析; 2. 通过建立三维数值模拟,研究吹灰蒸汽压力对渣层破坏、管壁应力和蒸汽消耗的影响,并通过模拟结果探讨合适的吹灰参数.
方法:1. 对渣层模型采用内聚力单元法进行建模; 2. 对蒸汽射流和渣层的流固耦合现象采用ABAQUS中的耦合欧拉-拉格朗日法进行分析.
结论:1. 越高的吹灰压力会导致渣层被破坏得越快并最终完全脱离水冷壁; 综合考虑渣层破坏效率、水冷壁管应力和蒸汽消耗的影响,1.2 MPa是最合适和经济的吹灰压力参数. 2. 蒸汽射流带来的切向应力是引起渣层破坏的主要因素,射流对渣层的直接冲击是切向应力的来源,并且是渣层破坏的次要因素.

关键词:吹灰; 锅炉; 数值模型; 内聚力单元法; 渣层破坏

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]ABAQUS, 2016. ABAQUS Analysis User’s Manual. Dassault Systèmes Simulia Corp, Johnston, Rhode Island, USA.

[2]Awinda K, Chen JY, Barnett SJ, 2016. Investigating geometrical size effect on the flexural strength of the ultra high performance fibre reinforced concrete using the cohesive crack model. Construction and Building Materials, 105:123-131.

[3]Benson DJ, Okazawa S, 2004. Contact in a multi-material Eulerian finite element formulation. Computer Methods in Applied Mechanics and Engineering, 193(39-41):4277-4298.

[4]Bussmann M, Emami B, Tandra D, et al., 2013. Modeling of sootblower jets and the impact on deposit removal in industrial boilers. Energy & Fuels, 27(10):5733-5737.

[5]Camanho PP, Dávila CG, 2002. Mixed-mode Decohesion Finite Elements for the Simulation of Delamination in Composite Materials. NASA/TM-2002-211737, National Aeronautics and Space Administration, Langley Research Center, Hampton, USA, p.1-37.

[6]Chen JY, Ravey E, Hallett S, et al., 2009. Prediction of delamination in braided composite T-piece specimens. Composites Science and Technology, 69(14):2363-2367.

[7]Chizari M, Barrett LM, Al-Hassani STS, 2009. An explicit numerical modelling of the water jet tube forming. Computational Materials Science, 45(2):378-384.

[8]Doroudi S, Pophali A, Bussmann M, et al., 2014. Modelling sootblower jet effectiveness with ANSYS fluent. Journal of Science & Technology for Forest Products and Processes, 4(4):30-35.

[9]Ebrahimi-Sabet SA, 2001. A Laboratory Study of Deposit Removal by Debonding and Its Application to Fireside Deposits in Kraft Recovery Boilers. PhD Thesis, University of Toronto, Toronto, Canada.

[10]Elices M, Guinea GV, Gómez J, et al., 2002. The cohesive zone model: advantages, limitations and challenges. Engineering Fracture Mechanics, 69(2):137-163.

[11]Fan JR, Zha XD, Sun P, et al., 2001. Simulation of ash deposit in a pulverized coal-fired boiler. Fuel, 80(5):645-654.

[12]Gálvez JC, Červenka J, Cendón DA, et al., 2002. A discrete crack approach to normal/shear cracking of concrete. Cement and Concrete Research, 32(10):1567-1585.

[13]Griffith AA, 1921. VI. The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London Series A, Containing Papers of a Mathematical or Physical Character, 221(582-593):163-198.

[14]Gui Y, Bui HH, Kodikara J, 2015. An application of a cohesive fracture model combining compression, tension and shear in soft rocks. Computers and Geotechnics, 66:142-157.

[15]Gui Y, Bui HH, Kodikara J, et al., 2016. Modelling the dynamic failure of brittle rocks using a hybrid continuum-discrete element method with a mixed-mode cohesive fracture model. International Journal of Impact Engineering, 87:146-155.

[16]Guo LW, 2014. Development of a Three-dimensional Fracture Model for the Combined Finite-discrete Element Method. PhD Thesis, Imperial College London, London, UK.

[17]Guo LW, Xiang JS, Latham JP, et al., 2016. A numerical investigation of mesh sensitivity for a new three-dimensional fracture model within the combined finite-discrete element method. Engineering Fracture Mechanics, 151:70-91.

[18]Hillerborg A, Modéer M, Petersson PE, 1976. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cement and Concrete Research, 6(6):773-781.

[19]Jameel MI, Cormack DE, Tran HN, et al., 1994. Sootblower optimization-part 1: fundamental hydrodynamics of a sootblower nozzle and jet. TAPPI Journal, 77(5):135-142.

[20]Jiang HX, Meng DG, 2018. 3D numerical modelling of rock fracture with a hybrid finite and cohesive element method. Engineering Fracture Mechanics, 199:280-293.

[21]Kaliazine AL, Piroozmand F, Cormack DE, et al., 1997. Sootblower optimization II: deposit and sootblower interaction. TAPPI Journal, 80(11):201-208.

[22]Kaliazine AL, Cormack DE, Ebrahimi-Sabet A, et al., 1999. The mechanics of deposit removal in kraft recovery boilers. Journal of Pulp and Paper Science, 25(12):418-424.

[23]Kazerani T, Yang ZY, Zhao J, 2012. A discrete element model for predicting shear strength and degradation of rock joint by using compressive and tensile test data. Rock Mechanics and Rock Engineering, 45(5):695-709.

[24]May M, 2015. Numerical evaluation of cohesive zone models for modeling impact induced delamination in composite materials. Composite Structures, 133:16-21.

[25]Pophali A, Eslamian M, Kaliazine A, et al., 2009. Breakup mechanisms of brittle deposits in kraft recovery boilers–a fundamental study. TAPPI Journal, 8(9):4-9.

[26]Pophali A, Emami B, Bussmann M, et al., 2013. Studies on sootblower jet dynamics and ash deposit removal in industrial boilers. Fuel Processing Technology, 105:69-76.

[27]Qiu G, Henke S, Grabe J, 2011. Application of a coupled Eulerian–Lagrangian approach on geomechanical problems involving large deformations. Computers and Geotechnics, 38(1):30-39.

[28]Smojver I, Ivančević D, 2011. Bird strike damage analysis in aircraft structures using Abaqus/Explicit and coupled Eulerian Lagrangian approach. Composites Science and Technology, 71(4):489-498.

[29]Su XT, Yang ZJ, Liu GH, 2010a. Finite element modelling of complex 3D static and dynamic crack propagation by embedding cohesive elements in Abaqus. Acta Mechanica Solida Sinica, 23(3):271-282.

[30]Su XT, Yang ZJ, Liu GH, 2010b. Monte Carlo simulation of complex cohesive fracture in random heterogeneous quasi-brittle materials: a 3D study. International Journal of Solids and Structures, 47(17):2336-2345.

[31]Turon A, Dávila CG, Camanho PP, et al., 2007. An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models. Engineering Fracture Mechanics, 74(10):1665-1682.

[32]Wain SE, Livingston WR, Sanyal A, et al., 1991. Thermal and mechanical properties of boiler slags of relevance to sootblowing. Proceedings of the Engineering Foundation Conference on Inorganic Transformations and Ash Deposition During Combustion, p.459-470.

[33]Yao Y, 2012. Linear elastic and cohesive fracture analysis to model hydraulic fracture in brittle and ductile rocks. Rock Mechanics and Rock Engineering, 45(3):375-387.

[34]Žbogar A, Jensen PA, Frandsen FJ, et al., 2006. Experimental investigation of ash deposit shedding in a straw-fired boiler. Energy & Fuels, 20(2):512-519.

[35]Zbogar A, Frandsen F, Jensen PA, et al., 2009. Shedding of ash deposits. Progress in Energy and Combustion Science, 35(1):31-56.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE