Full Text:   <2987>

Summary:  <1927>

CLC number: O32

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2019-10-10

Cited: 0

Clicked: 4164

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Wei-qiu Chen

https://orcid.org/0000-0003-0655-3303

Rong-hao Bao

https://orcid.org/0000-0002-4442-9533

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2019 Vol.20 No.11 P.811-822

http://doi.org/10.1631/jzus.A1900330


Tuning bandgaps in metastructured beams: numerical and experimental study


Author(s):  Yi Yuan, Wei-jian Zhou, Jian Li, Wei-qiu Chen, Rong-hao Bao

Affiliation(s):  Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province & Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China; more

Corresponding email(s):   chenwq@zju.edu.cn, brh@zju.edu.cn

Key Words:  Metastructured beam, Prestress, Tunable bandgap, Pseudo-gap, Arrangement


Share this article to: More |Next Article >>>

Yi Yuan, Wei-jian Zhou, Jian Li, Wei-qiu Chen, Rong-hao Bao. Tuning bandgaps in metastructured beams: numerical and experimental study[J]. Journal of Zhejiang University Science A, 2019, 20(11): 811-822.

@article{title="Tuning bandgaps in metastructured beams: numerical and experimental study",
author="Yi Yuan, Wei-jian Zhou, Jian Li, Wei-qiu Chen, Rong-hao Bao",
journal="Journal of Zhejiang University Science A",
volume="20",
number="11",
pages="811-822",
year="2019",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1900330"
}

%0 Journal Article
%T Tuning bandgaps in metastructured beams: numerical and experimental study
%A Yi Yuan
%A Wei-jian Zhou
%A Jian Li
%A Wei-qiu Chen
%A Rong-hao Bao
%J Journal of Zhejiang University SCIENCE A
%V 20
%N 11
%P 811-822
%@ 1673-565X
%D 2019
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1900330

TY - JOUR
T1 - Tuning bandgaps in metastructured beams: numerical and experimental study
A1 - Yi Yuan
A1 - Wei-jian Zhou
A1 - Jian Li
A1 - Wei-qiu Chen
A1 - Rong-hao Bao
J0 - Journal of Zhejiang University Science A
VL - 20
IS - 11
SP - 811
EP - 822
%@ 1673-565X
Y1 - 2019
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1900330


Abstract: 
Tunable metastructures (including phononic crystals and metamaterials) have the unique advantage that one can change the operating frequency and acoustic wave characteristics as needed. In this paper, the bandgap characteristics and their controllability of a metastructured beam with mass-spring oscillators and under an axial force are investigated in depth both by the finite element method and by experiment. The experimental and numerical results indicate that there is one local resonance (LR) bandgap and multiple Bragg scattering (BS) bandgaps. The width and position of each bandgap can be tuned effectively by adjusting the axial force, lattice constant, and spring stiffness, and a super wide pseudo-gap can be obtained under suitable conditions. By integrating different mass-spring oscillators into one metastructured beam, the bandgap width can be broadened and pseudo-gap-like characteristics can be achieved. By changing the number of different oscillators, the propagating distance of elastic waves in the beam can also be controlled. It is further revealed that point defects have a large influence on the BS bandgaps but little effect on the LR bandgap. The present work provides an important reference for the optimal design of adjustable high-performance metastructures.

带隙可调的超结构梁:数值和实验研究

目的:1. 研究晶格常数、预应力和弹簧刚度对超结构梁带隙的影响,优化结构并形成伪禁带或低频且宽的禁带; 2. 通过实验验证伪禁带的存在性、排列对带隙的影响以及缺陷对带隙的影响等.
创新点:1. 通过预应力调节超结构梁的带隙特征,并可以形成伪禁带; 2. 通过排列不同弹簧振子构成宽频禁带和宽频伪禁带.
方法:1. 通过有限元软件模拟预应力、弹簧刚度和晶格常数等参数对该超结构梁带隙的影响情况; 2. 设计合适的参数并进行结构优化,使得该结构的带隙宽,频率低,且易于实验实现; 3. 在实验中通过替换弹簧、改变弹簧间距和施加轴向拉力分别研究弹簧刚度、晶格常数和预应力的影响,并通过移除部分弹簧和同时布置不同弹簧的方式研究缺陷和排列对带隙的影响.
结论:1. 该结构存在一条局域共振禁带和多条布拉格散射禁带;通过调节预应力、弹簧刚度和晶格常数等可以有效地控制带隙特征. 2. 在特定条件下可以形成宽频伪禁带;通过排列不同弹簧振子可以达到拓宽禁带、形成宽频伪禁带的效果. 3. 缺陷对布拉格散射禁带的影响较大,对局域共振禁带的影响较小.

关键词:超结构梁;预拉伸;可调带隙;伪禁带;排列

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Barnhart MV, Xu XC, Chen YY, et al., 2019. Experimental demonstration of a dissipative multi-resonator metamaterial for broadband elastic wave attenuation. Journal of Sound and Vibration, 438:1-12.

[2]Bauchau OA, Craig JI, 2009. Structural Analysis. Springer, Dordrecht, USA, p.173-221.

[3]Bayat A, Gordaninejad F, 2015. Band-gap of a soft magnetorheological phononic crystal. Journal of Vibration and Acoustics, 137(1):011011.

[4]Bertoldi K, Boyce MC, 2008. Mechanically triggered transformations of phononic band gaps in periodic elastomeric structures. Physical Review B, 77(5):052105.

[5]Birkl G, Gatzke MA, Deutsch IH, et al., 1996. Bragg scattering from an optical lattice. Optics and Photonics News, 7(12):25.

[6]Chen H, Li XP, Chen YY, et al., 2017. Wave propagation and absorption of sandwich beams containing interior dissipative multi-resonators. Ultrasonics, 76:99-108.

[7]Chen YY, Barnhart MV, Chen JK, et al., 2016. Dissipative elastic metamaterials for broadband wave mitigation at subwavelength scale. Composite Structures, 136:358-371.

[8]Chew WC, Liu QH, 1996. Perfectly matched layers for elastodynamics: a new absorbing boundary condition. Journal of Computational Acoustics, 4(4):341-359.

[9]Deymier PA, 2013. Acoustic Metamaterials and Phononic Crystals. Springer, Berlin, Germany, p.176-177.

[10]Figotin A, Klein A, 1996. Localization of classical waves I: acoustic waves. Communications in Mathematical Physics, 180(2):439-482.

[11]Gao NS, Hou H, 2018. Sound absorption characteristic of micro-helix metamaterial by 3D printing. Theoretical and Applied Mechanics Letters, 8(2):63-67.

[12]Gao NS, Hou H, Mu YH, 2017. Low frequency acoustic properties of bilayer membrane acoustic metamaterial with magnetic oscillator. Theoretical and Applied Mechanics Letters, 7(4):252-257.

[13]Gei M, Movchan AB, Bigoni D, 2009. Band-gap shift and defect-induced annihilation in prestressed elastic structures. Journal of Applied Physics, 105(6):063507.

[14]Huang GL, Sun CT, 2010. Band gaps in a multiresonator acoustic metamaterial. Journal of Vibration and Acoustics, 132(3):031003.

[15]Huang ZG, Wu TT, 2005. Temperature effect on the bandgaps of surface and bulk acoustic waves in two-dimensional phononic crystals. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 52(3):365-370.

[16]Javid F, Wang P, Shanian A, et al., 2016. Architected materials with ultra-low porosity for vibration control. Advanced Materials, 28(28):5943-5948.

[17]Kittel C, 2005. Introduction to Solid State Physics, 8th Edition. John Wiley & Sons, New York, USA, p.167-168.

[18]Kushwaha M, 2008. Ultra-wide-band filter for noise control. The Journal of the Acoustical Society of America, 124(4):2488.

[19]Kushwaha MS, Halevi P, Dobrzynski L, et al., 1993. Acoustic band structure of periodic elastic composites. Physical Review Letters, 71(13):2022-2025.

[20]Liu ZY, Zhang XX, Mao YW, et al., 2000. Locally resonant sonic materials. Science, 289(5485):1734-1736.

[21]Liu ZY, Chan CT, Sheng P, 2002. Three-component elastic wave band-gap material. Physical Review B, 65(16):165116.

[22]Miyashita T, 2005. Sonic crystals and sonic wave-guides. Measurement Science and Technology, 16(5):R47-R63.

[23]Mousavi SH, Khanikaev AB, Wang Z, 2015. Topologically protected elastic waves in phononic metamaterials. Nature Communications, 6(1):8682.

[24]Rupp CJ, Dunn ML, Maute K, 2010. Switchable phononic wave filtering, guiding, harvesting, and actuating in polarization-patterned piezoelectric solids. Applied Physics Letters, 96(11):111902.

[25]Sheng X, Zhao CY, Yi Q, et al., 2018. Engineered metabarrier as shield from longitudinal waves: band gap properties and optimization mechanisms. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 19(9):663-675.

[26]Xiao Y, Wen JH, Wen XS, 2012. Flexural wave band gaps in locally resonant thin plates with periodically attached spring-mass resonators. Journal of Physics D: Applied Physics, 45(19):195401.

[27]Xu XC, Barnhart MV, Li XP, et al., 2019. Tailoring vibration suppression bands with hierarchical metamaterials containing local resonators. Journal of Sound and Vibration, 442:237-248.

[28]Yang WP, Wu LY, Chen LW, 2008. Refractive and focusing behaviours of tunable sonic crystals with dielectric elastomer cylindrical actuators. Journal of Physics D: Applied Physics, 41(13):135408.

[29]Yao ZJ, Yu GL, Wang YS, et al., 2010. Propagation of flexural waves in phononic crystal thin plates with linear defects. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 11(10):827-834.

[30]Yeh JY, 2007. Control analysis of the tunable phononic crystal with electrorheological material. Physics B: Condensed Matter, 400(1-2):137-144.

[31]Yu DL, Wen JH, Zhao HG, et al., 2008. Vibration reduction by using the idea of phononic crystals in a pipe-conveying fluid. Journal of Sound and Vibration, 318(1-2):193-205.

[32]Zhang Y, Han L, Jiang LH, et al., 2015. Phononic Crystal Calculation Method and Band Gap Properties. Science Press, Beijing, China, p.9 (in Chinese).

[33]Zhou WJ, Wu B, Su YP, et al., 2019. Tunable flexural wave band gaps in a prestressed elastic beam with periodic smart resonators. Mechanics of Advanced Materials and Structures, 1-8.

[34]Zhu R, Liu XN, Hu GK, et al., 2014. A chiral elastic metamaterial beam for broadband vibration suppression. Journal of Sound and Vibration, 333(10):2759-2773.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE