CLC number: TH136
On-line Access: 2021-04-12
Received: 2020-12-06
Revision Accepted: 2021-01-27
Crosschecked: 2021-03-18
Cited: 0
Clicked: 4699
Citations: Bibtex RefMan EndNote GB/T7714
Jin-yuan Qian, Juan Mu, Cong-wei Hou, Zhi-jiang Jin. A parametric study on unbalanced moment of piston type valve core[J]. Journal of Zhejiang University Science A, 2021, 22(4): 265-276.
@article{title="A parametric study on unbalanced moment of piston type valve core",
author="Jin-yuan Qian, Juan Mu, Cong-wei Hou, Zhi-jiang Jin",
journal="Journal of Zhejiang University Science A",
volume="22",
number="4",
pages="265-276",
year="2021",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A2000582"
}
%0 Journal Article
%T A parametric study on unbalanced moment of piston type valve core
%A Jin-yuan Qian
%A Juan Mu
%A Cong-wei Hou
%A Zhi-jiang Jin
%J Journal of Zhejiang University SCIENCE A
%V 22
%N 4
%P 265-276
%@ 1673-565X
%D 2021
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A2000582
TY - JOUR
T1 - A parametric study on unbalanced moment of piston type valve core
A1 - Jin-yuan Qian
A1 - Juan Mu
A1 - Cong-wei Hou
A1 - Zhi-jiang Jin
J0 - Journal of Zhejiang University Science A
VL - 22
IS - 4
SP - 265
EP - 276
%@ 1673-565X
Y1 - 2021
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A2000582
Abstract: In this paper, the piston type valve core and the unbalanced moment on its bottom are studied. To decrease the influence of non-common geometrical factors, a simplified model of the piston type globe valve is proposed in this study. Based on the computational fluid dynamics (CFD) method, the effects of different geometrical parameters on the unbalanced moment existing on the bottom of the valve core, which include the bending radius of the inlet flow channel, the diameter of the special-shaped pipe, and the height of the valve core, are studied. Finally, the effects of geometrical parameters on the unbalanced moment on the bottom of the valve core are clarified by correction and variation classification and provide a basis for further optimizing the structure of the piston type valve. The results show that the unbalanced moment decreases with the increase of the bending radius of the inlet flow channel, but increases with the increase of the diameter of the special-shaped pipe and the height of the valve core. Moreover, the relation between the unbalanced moment and flow rate is proposed.
[1]Amirante R, Catalano LA, Poloni C, et al., 2014. Fluid-dynamic design optimization of hydraulic proportional directional valves. Engineering Optimization, 46(10):1295-1314.
[2]Amirante R, Distaso E, Tamburrano P, 2016. Sliding spool design for reducing the actuation forces in direct operated proportional directional valves: experimental validation. Energy Conversion and Management, 119:399-410.
[3]Frosina E, Senatore A, Buono D, et al., 2016. A mathematical model to analyze the torque caused by fluid–solid interaction on a hydraulic valve. Journal of Fluids Engineering, 138(6):061103.
[4]Frosina E, Senatore A, Buono D, et al., 2017. A modeling approach to study the fluid-dynamic forces acting on the spool of a flow control valve. Journal of Fluids Engineering, 139(1):011103.
[5]Han MX, Liu YS, Wu DF, et al., 2017. A numerical investigation in characteristics of flow force under cavitation state inside the water hydraulic poppet valves. International Journal of Heat and Mass Transfer, 111:1-16.
[6]Han MX, Liu YS, Wu DF, et al., 2018. Numerical analysis and optimisation of the flow forces in a water hydraulic proportional cartridge valve for injection system. IEEE Access, 6:10392-10401.
[7]Hou CW, Mu J, Li WQ, et al., 2019. Transient simulation on unbalanced torque of piston type valve cores during dynamic motion. Proceedings of the ASME-JSME-KSME 8th Joint Fluids Engineering Conference, No. V03AT03A018.
[8]Jin ZJ, Qiu C, Jiang CH, et al., 2020. Effect of valve core shapes on cavitation flow through a sleeve regulating valve. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 21(1):1-14.
[9]Kourakos V, Rambaud P, Buchlin JM, et al., 2013. Flowforce in a safety relief valve under incompressible, compressible, and two-phase flow conditions (PVP-2011-57896). Journal of Pressure Vessel Technology, 135(1):011305.
[10]Lin Z, Wang HJ, Shang ZH, et al., 2015. Effect of cone angle on the hydraulic characteristics of globe control valve. Chinese Journal of Mechanical Engineering, 28(3):641-648.
[11]Lisowski E, Filo G, Rajda J, 2018. Analysis of flow forces in the initial phase of throttle gap opening in a proportional control valve. Flow Measurement and Instrumentation, 59:157-167.
[12]Manring ND, Zhang SS, 2012. Pressure transient flow forces for hydraulic spool valves. Journal of Dynamic Systems, Measurement, and Control, 134(3):034501.
[13]Nguyen QK, Jung KH, Lee GN, et al., 2020. Experimental study on pressure distribution and flow coefficient of globe valve. Processes, 8(7):875.
[14]Qian JY, Liu BZ, Lei LN, et al., 2016a. Effects of orifice on pressure difference in pilot-control globe valve by experimental and numerical methods. International Journal of Hydrogen Energy, 41(41):18562-18570.
[15]Qian JY, Liu BZ, Jin ZJ, et al., 2016b. Numerical analysis of flow and cavitation characteristics in a pilot-control globe valve with different valve core displacements. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 17(1):54-64.
[16]Simic M, Herakovic N, 2015. Reduction of the flow forces in a small hydraulic seat valve as alternative approach to improve the valve characteristics. Energy Conversion and Management, 89:708-718.
[17]Wang H, Quan L, Huang JH, et al., 2019. Reduction of steady flow torques in a single-stage rotary servo valve. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 233(4):718-727.
[18]Wang HH, Xu H, Zhang YH, et al., 2019. Design of a bio-inspired anti-erosion structure for a water hydraulic valve core: an experimental study. Biomimetics, 4(3):63.
[19]Wang YP, Zhu CN, Zhang G, et al., 2020. Numerical analysis to the effect of guiding plate on flow characteristics in a ball valve. Processes, 8(1):69.
[20]Zhang JH, Wang D, Xu B, et al., 2018. Experimental and numerical investigation of flow forces in a seat valve using a damping sleeve with orifices. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 19(6):417-430.
[21]Zhao JH, Zhou SL, Lu XH, et al., 2015. Numerical simulation and experimental study of heat-fluid-solid coupling of double flapper-nozzle servo valve. Chinese Journal of Mechanical Engineering, 28(5):1030-1038.
Open peer comments: Debate/Discuss/Question/Opinion
<1>