Full Text:   <846>

Summary:  <190>

Suppl. Mater.: 

CLC number: 

On-line Access: 2023-11-13

Received: 2022-10-04

Revision Accepted: 2023-02-22

Crosschecked: 2023-11-14

Cited: 0

Clicked: 1109

Citations:  Bibtex RefMan EndNote GB/T7714




-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2023 Vol.24 No.11 P.949-959


Effect of carbon dioxide concentration on the combustion characteristics of boron agglomerates in oxygen-containing atmospheres

Author(s):  Lian DUAN, Zhixun XIA, Yunchao FENG, Binbin CHEN, Jiarui ZHANG, Likun MA

Affiliation(s):  College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China

Corresponding email(s):   chenbinbin11@nudt.edu.cn

Key Words:  Boron combustion, Amorphous boron, Boron-containing propellant, Solid fuel ramjet

Lian DUAN, Zhixun XIA, Yunchao FENG, Binbin CHEN, Jiarui ZHANG, Likun MA. Effect of carbon dioxide concentration on the combustion characteristics of boron agglomerates in oxygen-containing atmospheres[J]. Journal of Zhejiang University Science A, 2023, 24(11): 949-959.

@article{title="Effect of carbon dioxide concentration on the combustion characteristics of boron agglomerates in oxygen-containing atmospheres",
author="Lian DUAN, Zhixun XIA, Yunchao FENG, Binbin CHEN, Jiarui ZHANG, Likun MA",
journal="Journal of Zhejiang University Science A",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Effect of carbon dioxide concentration on the combustion characteristics of boron agglomerates in oxygen-containing atmospheres
%A Lian DUAN
%A Zhixun XIA
%A Yunchao FENG
%A Binbin CHEN
%A Jiarui ZHANG
%A Likun MA
%J Journal of Zhejiang University SCIENCE A
%V 24
%N 11
%P 949-959
%@ 1673-565X
%D 2023
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A2200468

T1 - Effect of carbon dioxide concentration on the combustion characteristics of boron agglomerates in oxygen-containing atmospheres
A1 - Lian DUAN
A1 - Zhixun XIA
A1 - Yunchao FENG
A1 - Binbin CHEN
A1 - Jiarui ZHANG
A1 - Likun MA
J0 - Journal of Zhejiang University Science A
VL - 24
IS - 11
SP - 949
EP - 959
%@ 1673-565X
Y1 - 2023
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A2200468

In ramjet combustion chambers, carbon dioxide (CO2) produced by the combustion of carbonaceous fuel enters the chamber together with boron agglomerates. In order to investigate the effect of CO2 concentration present in an oxygen-containing atmosphere on the combustion characteristics and oxidation mechanisms of boron agglomerates, we used a laser ignition system, an X-ray diffractometer (XRD), and a thermogravimetric-differential scanning calorimetry (TG-DSC) combined thermal analysis system. Single-particle boron was tested in the laser-ignition experiments as the control group. The ignition experiment results showed that with a fixed O2 concentration of 20%, when the particle temperature reaches the melting point of boron, increasing CO2 content causes the combustion process of boron agglomerates to transition from single-particle molten droplet combustion to porous-particle combustion. Furthermore, XRD analysis results indicated that the condensed-phase combustion products (CCPs) of boron particles in a mixed atmosphere of O2 and CO2 contained B4C, which is responsible for the porous structure of the particles. At temperatures below 1200 °C, the addition of CO2 has no obvious promotion effect on boron exothermic reaction. However, in the laser-ignition experiment, when the oxygen concentration was fixed at 20% while the CO2 concentration increased from 0% to 80%, the maximum temperature of boron agglomerates rose from 2434 to 2573 K, the self-sustaining combustion time of single-particle boron decreased from 396 to 169 ms, and the self-sustaining combustion time of boron agglomerates decreased from 198 to 40 ms. This study conclusively showed that adding CO2 to an oxygen-containing atmosphere facilitates boron reaction and consumption pathways, which is beneficial to promoting exothermic reaction of boron agglomerates at relatively high temperatures.




Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1]BurkholderTR, AndrewsL, 1991. Reactions of boron atoms with molecular oxygen. Infrared spectra of BO, BO2, B2O2, B2O3, and BO2- in solid argon. The Journal of Chemical Physics, 95(12):8697-8709.

[2]BurkholderTR, AndrewsL, BartlettRJ, 1993. Reaction of boron atoms with carbon dioxide: matrix and ab initio calculated infrared spectra of OBCO. The Journal of Physical Chemistry, 97(14):3500-3503.

[3]ChenBB, XiaZX, HuangLY, et al., 2018. Characteristics of the combustion chamber of a boron-based solid propellant ducted rocket with a chin-type inlet. Aerospace Science and Technology, 82-83:210-219.

[4]ChinCH, MebelAM, HwangDY, 2003. Theoretical study of the reaction mechanism of boron atom with carbon dioxide. Chemical Physics Letters, 375(5-6):670-675.

[5]DiGiuseppeTG, DavidovitsP, 1981. Boron atom reactions. II. Rate constants with O2, SO2, CO2, and N2O. The Journal of Chemical Physics, 74(6):3287-3291.

[6]DuanL, XiaZX, ChenBB, et al., 2022. Ignition and combustion characteristics of boron agglomerates under different oxygen concentrations. Acta Astronautica, 197:81-90.

[7]FoelscheRO, BurtonRL, KrierH, 1999. Boron particle ignition and combustion at 30‍–‍150 atm. Combustion and Flame, 117(1-2):32-58.

[8]FryRS, 2004. A century of ramjet propulsion technology evolution. Journal of Propulsion and Power, 20(1):27-58.

[9]HashimSA, IslamM, KangleSM, et al., 2021. Performance evaluation of boron/hydroxyl-terminated polybutadiene-based solid fuels containing activated charcoal. Journal of Spacecraft and Rockets, 58(2):363-374.

[10]JainA, AnthonysamyS, 2015. Oxidation of boron carbide powder. Journal of Thermal Analysis and Calorimetry, 122(2):645-652.

[11]KingMK, 1973. Boron particle ignition in hot gas streams. Combustion Science and Technology, 8(5-6):255-273.

[12]KrierH, BurtonRL, PirmanSR, et al., 1996. Shock initiation of crystalline boron in oxygen and fluorine compounds. Journal of Propulsion and Power, 12(4):672-679.

[13]LiHP, AoW, WangY, et al., 2014. Effect of carbon dioxide on the reactivity of the oxidation of boron particles. Propellants, Explosives, Pyrotechnics, 39(4):617-623.

[14]LiXP, GeLH, LuanXT, 2007. Applications of gas generator in ramjet direct-connect test facility. Journal of Rocket Propulsion, 33(3):14-19 (in Chinese).

[15]LiYQ, QiuT, 2007. Oxidation behaviour of boron carbide powder. Materials Science and Engineering: A, 444(1-2):184-191.

[16]LiangDL, LiuJZ, ZhouYN, et al., 2017. Ignition and combustion characteristics of molded amorphous boron under different oxygen pressures. Acta Astronautica, 138:‍118-128.

[17]LiuLL, HeGQ, WangYH, et al., 2015. Chemical analysis of primary combustion products of boron-based fuel-rich propellant. RSC Advances, 5(123):101416-101426.

[18]LiuLL, HeGQ, WangYH, et al., 2017. Factors affecting the primary combustion products of boron-based fuel-rich propellants. Journal of Propulsion and Power, 33(2):333-337.

[19]LvZ, XiaZX, LiuB, et al., 2017. Preliminary experimental study on solid-fuel rocket scramjet combustor. Journal of Zhejiang University-SCIENCE A (Applied Physics and Engineering), 18(2):106-112.

[20]MeerovD, MonogarovK, BraginA, et al., 2015. Boron particles agglomeration and slag formation during combustion of energetic condensed systems. Physics Procedia, 72:85-88.

[21]MiXC, GoroshinS, HigginsAJ, et al., 2013. Dual-stage ignition of boron particle agglomerates. Combustion and Flame, 160(11):2608-2618.

[22]MillotF, RiffletJC, Sarou-KanianV, et al., 2002. High-temperature properties of liquid boron from contactless techniques. International Journal of Thermophysics, 23(5):1185-1195.

[23]RouxJA, ChoiJ, ShakyaN, 2014. Parametric scramjet cycle analysis for nonideal mass flow rate. Journal of Thermophysics and Heat Transfer, 28(1):166-171.

[24]SmolanoffJ, Sowa-ResatM, ŁapickiA, et al., 1996. Kinetic parameters for heterogenous boron combustion reactions via the Cluster Beam approach. Combustion and Flame, 105(1-2):68-79.

[25]SongQG, CaoW, WeiX, et al., 2021. Laser ignition and combustion characteristics of micro- and nano-sized boron under different atmospheres and pressures. Combustion and Flame, 230:111420.

[26]SunYL, RenH, DuFZ, et al., 2018. Preparation and characterization of sintered B/MgB2 as heat release material. Journal of Alloys and Compounds, 759:100-107.

[27]SunYL, RenH, JiaoQJ, et al., 2020. Oxidation, ignition and combustion behaviors of differently prepared boron-magnesium composites. Combustion and Flame, 221:11-19.

[28]UlasA, KuoKK, GotzmerC, 2001. Ignition and combustion of boron particles in fluorine-containing environments. Combustion and Flame, 127(1-2):1935-1957.

[29]YetterRA, RabitzH, DryerFL, et al., 1991. Kinetics of high-temperature B/O/H/C chemistry. Combustion and Flame, 83(1-2):43-62.

[30]YoshidaT, YuasaS, 2000. Effect of water vapor on ignition and combustion of boron lumps in an oxygen stream. Proceedings of the Combustion Institute, 28(2):2735-2741.

[31]YuasaS, IsodaH, 1991. Ignition and combustion of small boron lumps in an oxygen stream. Combustion and Flame, 86(3):216-222.

[32]ZhangH, WangNF, WuZW, 2020. Effect of fuel grain configuration on the thrust of a solid-fuel scramjet. Aerospace Science and Technology, 106:106145.

[33]ZhouW, 1998. Numerical Study of Multi-Phase Combustion: Ignition and Combustion of an Isolated Boron Particle in Fluorinated Environments. PhD Thesis, Princeton University, Princeton, USA.

[34]ZhouW, YetterRA, DryerFL, et al., 1998. Effect of fluorine on the combustion of “clean” surface boron particles. Combustion and Flame, 112(4):507-521.

[35]ZhouW, YetterRA, DryerFL, et al., 1999. Multi-phase model for ignition and combustion of boron particles. Combustion and Flame, 117(1-2):227-243.

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE